Advertisement

Journal of Materials Science

, Volume 54, Issue 21, pp 13579–13593 | Cite as

Elastic, phononic, magnetic and electronic properties of quasi-one-dimensional PbFeBO4

  • Mariano Curti
  • M. Mangir Murshed
  • Thomas Bredow
  • Detlef W. Bahnemann
  • Thorsten M. Gesing
  • Cecilia B. MendiveEmail author
Computation & theory

Abstract

The diverse and interesting properties of mullite-type PbFeBO4 have resulted in a growing number of publications, using both experimental and computational methodologies. However, several questions remain to be explored such as the role of the magnetic configuration on the intrinsic potential anharmonicity at a microscopic level, and on the elastic properties and associated pressure-induced response of the nuclear structure. We thus employ the hybrid method PW1PW to study the structural, phononic, magnetic and electronic properties of PbFeBO4 at four different magnetic configurations. The magnetic configuration-driven strong anisotropy of the properties is correlated to two structural features, namely, the one-dimensional chains of FeO6 octahedra and the stereochemical activity of the lone electron pairs of Pb2+ cations. We propose a mechanism to explain the observed axial negative linear compressibility in the b direction. The vibrational features demonstrate insights into the anharmonic behavior of the structure, and a large fraction of modes with negative mode Grüneisen parameters. By optimizing four different magnetic configurations at different pressures the associated spin exchange parameters are calculated; the magnetic configuration considerably affects the magneto-elastic behavior of the structure. Optical absorption spectra calculated by GW0-BSE show a strong anisotropy, associated with the quasi-one-dimensional character of the structure given by the FeO6 chains.

Notes

Acknowledgements

The authors acknowledge UNMDP (EXA794/16 and EXA 898/18) for the financial support. CBM is member of the research staff of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). MC is grateful to CONICET for his postdoctoral fellowship and to the Deutscher Akademischer Austauschdienst (DAAD) together with the Ministerio de Educación, Cultura, Ciencia y Tecnología (Argentina) for his ALEARG scholarship. The calculations presented here were mainly carried out on the cluster system at the Leibniz Universität Hannover, Germany. MMM gratefully thanks University of Bremen. This project was supported by the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG) under the project number GE1981/9-1 and by Saint-Petersburg State University via a research Grant ID 32706707.

Supplementary material

10853_2019_3866_MOESM1_ESM.docx (140 kb)
Supplementary material 1 (DOCX 140 kb)

References

  1. 1.
    Murshed MM, Mendive CB, Curti M, Nénert G, Kalita PE, Lipinska K, Cornelius AL, Huq A, Gesing TM (2014) Anisotropic lattice thermal expansion of PbFeBO4: a study by X-ray and neutron diffraction, Raman spectroscopy and DFT calculations. Mater Res Bull 59:170–178.  https://doi.org/10.1016/j.materresbull.2014.07.005 CrossRefGoogle Scholar
  2. 2.
    Park H, Lam R, Greedan JE, Barbier J (2003) Synthesis, crystal structure, crystal chemistry, and magnetic properties of PbMBO4 (M = Cr, Mn, Fe): a new structure type exhibiting one-dimensional magnetism. Chem Mater 15:1703–1712.  https://doi.org/10.1021/cm0217452 CrossRefGoogle Scholar
  3. 3.
    Murshed MM, Fischer RX, Gesing TM (2012) The role of the Pb2+ lone electron pair for bond valence sum analysis in mullite-type PbMBO4 (M = Al, Mn and Fe) compounds. Z Kristallogr 227:580–584.  https://doi.org/10.1524/zkri.2012.1483 CrossRefGoogle Scholar
  4. 4.
    Koo HJ, Whangbo MH (2009) Density functional investigation of the magnetic properties of PbMBO4 (M = Cr, Mn, Fe). Solid State Commun 149:602–604.  https://doi.org/10.1016/j.ssc.2009.01.030 CrossRefGoogle Scholar
  5. 5.
    Xiang H, Tang Y, Zhang S, He Z (2016) He intra-chain superexchange couplings in quasi-1D 3d transition-metal magnetic compounds. J Phys: Condens Matter 28:276003.  https://doi.org/10.1088/0953-8984/28/27/276003 Google Scholar
  6. 6.
    Prosnikov MA, Smirnov AN, Davydov VY, Sablina KA, Pisarev RV (2017) Lattice and magnetic dynamics of a quasi-one-dimensional chain antiferromagnet PbFeBO4. J Phys: Condens Matter 29:025508.  https://doi.org/10.1088/0953-8984/29/2/025808 Google Scholar
  7. 7.
    Pankrats A, Sablina K, Velikanov D, Vorotynov A, Bayukov O, Eremin A, Molokeev M, Popkov S, Krasikov A (2014) Magnetic and dielectric properties of the PbFeBO4 single crystal. J Magn Magn Mater 353:23–28.  https://doi.org/10.1016/j.jmmm.2013.10.018 CrossRefGoogle Scholar
  8. 8.
    Murshed MM, Mendive CB, Curti M, Šehovic M, Friedrich A, Fischer M, Gesing TM (2015) Thermal expansion of mullite-type Bi2Al4O9: a study by X-ray diffraction, vibrational spectroscopy and density functional theory. J Solid State Chem 229:87–96.  https://doi.org/10.1016/j.jssc.2015.05.010 CrossRefGoogle Scholar
  9. 9.
    Gesing TM, Mendive CB, Curti M, Hansmann D, Nénert G, Kalita PE, Lipinska KE, Huq A, Cornelius AL, Murshed MM (2013) Structural properties of mullite-type Pb(Al1−xMnx)BO4. Z. Kristallogr. Cryst. Mater. 228:532–543.  https://doi.org/10.1524/zkri.2013.1640 CrossRefGoogle Scholar
  10. 10.
    Kirsch A, Murshed MM, Kirkham MJ, Huq A, Litterst FJ, Gesing TM (2018) Temperature-dependent structural and spectroscopic studies of (Bi1−xFex)FeO3. J Phys Chem C 122:28280–28291.  https://doi.org/10.1021/acs.jpcc.8b05740 CrossRefGoogle Scholar
  11. 11.
    Gesing TM, Schowalter M, Weidenthaler C, Murshed MM, Nénert G, Mendive CB, Curti M, Rosenauer A, Buhl J-C, Schneider H, Fischer RX (2012) Strontium doping in mullite-type bismuth aluminate: a vacancy investigation using neutrons, photons and electrons. J Mater Chem 22:18814–18823.  https://doi.org/10.1039/c2jm33208f CrossRefGoogle Scholar
  12. 12.
    Murshed MM, Šehović M, Fischer M, Senyshyn A, Schneider H, Gesing TM (2017) Thermal behavior of mullite between 4 K and 1320 K. J Am Ceram Soc 100:5259–5273.  https://doi.org/10.1111/jace.15028 CrossRefGoogle Scholar
  13. 13.
    Murshed MM, Zhao P, Fischer M, Huq A, Alekseev EV, Gesing TM (2016) Thermal expansion modeling of framework-type Na[AsW2O9] and K[AsW2O9]. Mater Res Bull 84:273–282.  https://doi.org/10.1016/j.materresbull.2016.08.020 CrossRefGoogle Scholar
  14. 14.
    Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco P, Noël Y, Causà M, Rérat M, Kirtman B (2014) CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int J Quantum Chem 114:1287–1317.  https://doi.org/10.1002/qua.24658 CrossRefGoogle Scholar
  15. 15.
    Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco P, Llunell M, Causà M, Noël Y (2014) CRYSTAL14 user’s manual. University of Torino, TorinoGoogle Scholar
  16. 16.
    Bredow T, Gerson A (2000) Effect of exchange and correlation on bulk properties of MgO, NiO, and CoO. Phys. Rev. B. 61:5194–5201.  https://doi.org/10.1103/PhysRevB.61.5194 CrossRefGoogle Scholar
  17. 17.
    Zicovich-Wilson CM, Pascale F, Roetti C, Saunders VR, Orlando R, Dovesi R (2004) Calculation of the vibration frequencies of α-quartz: the effect of Hamiltonian and basis set. J Comput Chem 25:1873–1881.  https://doi.org/10.1002/jcc.20120 CrossRefGoogle Scholar
  18. 18.
    Pascale F, Zicovich-Wilson CM, López Gejo F, Civalleri B, Orlando R, Dovesi R (2004) The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. J Comput Chem 25:888–897.  https://doi.org/10.1002/jcc.20019 CrossRefGoogle Scholar
  19. 19.
    Wang Y, Wang JJ, Wang WY, Mei ZG, Shang SL, Chen LQ, Liu ZK (2010) A mixed-space approach to first-principles calculations of phonon frequencies for polar materials. J Phys: Condens Matter 22:202201.  https://doi.org/10.1088/0953-8984/22/20/202201 Google Scholar
  20. 20.
    Ferrero M, Kirtman B, Dovesi R (2008) I. Introduction, Calculation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the Crystal code. J. Chem. Phys. 129:244110.  https://doi.org/10.1063/1.3043366 CrossRefGoogle Scholar
  21. 21.
    Ferrero M, Ŕrat M, Orlando R, Dovesi R (2008) Coupled perturbed Hartree–Fock for periodic systems: the role of symmetry and related computational aspects. J. Chem. Phys. 128:014110.  https://doi.org/10.1063/1.2817596 CrossRefGoogle Scholar
  22. 22.
    Ferrero M, Rérat M, Orlando R, Dovesi R (2008) The calculation of static polarizabilities of 1-3D periodic compounds. the implementation in the crystal code. J Comput Chem 29:1450–1459.  https://doi.org/10.1002/jcc.20905 CrossRefGoogle Scholar
  23. 23.
    Perger WF, Criswell J, Civalleri B, Dovesi R (2009) Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code. Comput Phys Commun 180:1753–1759.  https://doi.org/10.1016/j.cpc.2009.04.022 CrossRefGoogle Scholar
  24. 24.
    Erba A, Mahmoud A, Orlando R, Dovesi R (2014) Elastic properties of six silicate garnet end members from accurate ab initio simulations. Phys Chem Miner 41:151–160.  https://doi.org/10.1007/s00269-013-0630-4 CrossRefGoogle Scholar
  25. 25.
    Ortiz AU, Boutin A, Fuchs AH, Coudert F-X (2013) Metal–organic frameworks with wine-rack motif: what determines their flexibility and elastic properties? J. Chem. Phys. 138:174703.  https://doi.org/10.1063/1.4802770 CrossRefGoogle Scholar
  26. 26.
    Anderson DG (1965) Iterative procedures for nonlinear integral equations. J ACM 12:547–560.  https://doi.org/10.1145/321296.321305 CrossRefGoogle Scholar
  27. 27.
    Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys: Condens Matter 22:253202.  https://doi.org/10.1088/0953-8984/22/25/253202 Google Scholar
  28. 28.
    Boese AD, Handy NC (2001) A new parametrization of exchange–correlation generalized gradient approximation functionals. J. Chem. Phys. 114:5497–5503.  https://doi.org/10.1063/1.1347371 CrossRefGoogle Scholar
  29. 29.
    Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74:601–659.  https://doi.org/10.1103/RevModPhys.74.601 CrossRefGoogle Scholar
  30. 30.
    Gesing TM, Fischer RX, Burianek M, Mühlberg M, Debnath T, Rüscher CH, Ottinger J, Buhl JC, Schneider H (2011) Synthesis and properties of mullite-type (Bi1−xSrx)2(M1− y1My2)4O9−x (M = Al, Ga, Fe). J Eur Ceram Soc 31:3055–3062.  https://doi.org/10.1016/j.jeurceramsoc.2011.04.004 CrossRefGoogle Scholar
  31. 31.
    Cairns AB, Goodwin AL (2015) Negative linear compressibility. Phys Chem Chem Phys 17:20449–20465.  https://doi.org/10.1039/b000000x CrossRefGoogle Scholar
  32. 32.
    Gatt R, Caruana-Gauci R, Grima JN (2013) Negative linear compressibility: giant response. Nat Mater 12:182–183.  https://doi.org/10.1038/nmat3584 CrossRefGoogle Scholar
  33. 33.
    Kalita PE (2014) High pressure behavior of mullite-type oxides: phase transitions, amorphization, negative linear compressibility and microstructural implications. Doctoral Thesis, University of Nevada, Las VegasGoogle Scholar
  34. 34.
    Dinnebier RE, Hinrichsen B, Lennie A, Jansen M (2009) High-pressure crystal structure of the non-linear optical compound BiB3O6 from two-dimensional powder diffraction data. Acta Crystallogr B 65:1–10.  https://doi.org/10.1107/S0108768108029340 CrossRefGoogle Scholar
  35. 35.
    Schreuer J, Hildmann B, Schneider H (2006) Elastic properties of mullite single crystals up to 1400°C. J Am Ceram Soc 89:1624–1631.  https://doi.org/10.1111/j.1551-2916.2006.00921.x CrossRefGoogle Scholar
  36. 36.
    Vaughan MT, Weidner DJ (1978) The relationship of elasticity and crystal structure in andalusite and sillimanite. Phys Chem Miner 3:133–144.  https://doi.org/10.1007/BF00308117 CrossRefGoogle Scholar
  37. 37.
    Haussühl S, Bohatý L, Becker P (2006) Piezoelectric and elastic properties of the nonlinear optical material bismuth triborate, BiB3O6. Appl Phys A 82:495–502.  https://doi.org/10.1007/s00339-005-3443-6 CrossRefGoogle Scholar
  38. 38.
    Schneider H, Fischer RX, Schreuer J (2015) Mullite: crystal structure and related properties. J Am Ceram Soc 98:2948–2967.  https://doi.org/10.1111/jace.13817 CrossRefGoogle Scholar
  39. 39.
    Oganov AR, David Price G, Brodholt JP (2001) Theoretical investigation of metastable Al2SiO5 polymorphs. Acta Crystallogr A 57:548–557.  https://doi.org/10.1107/s0108767301007644 CrossRefGoogle Scholar
  40. 40.
    Schneider H, Fischer RX, Gesing TM, Schreuer J, Muhlberg M (2012) Crystal chemistry and properties of mullite-type Bi2M4O9: an overview. Int J Mater Res 103:422–429.  https://doi.org/10.3139/146.110716 CrossRefGoogle Scholar
  41. 41.
    Fortes AD, Suard E, Knight KS (2011) Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate. Science 331:742–746.  https://doi.org/10.1126/science.1198640 CrossRefGoogle Scholar
  42. 42.
    Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chemie Int. Ed. 46:1222–1244.  https://doi.org/10.1002/anie.200602866 CrossRefGoogle Scholar
  43. 43.
    Barrera GD, Bruno JAO, Barron THK, Allan NL (2005) Negative thermal expansion. J Phys: Condens Matter 17:R217–R252.  https://doi.org/10.1088/0953-8984/17/4/R03 Google Scholar
  44. 44.
    Ferrabone M, Baima J (2013) Phonon dispersion with CRYSTAL. http://www.theochem.unito.it/crystal_tuto/mssc2013_cd/tutorials/dispersion/dispersion-ht.html. Accessed 29 Mar 2019
  45. 45.
    Souri D, Tahan ZE (2015) A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl Phys B 119:273–279.  https://doi.org/10.1007/s00340-015-6053-9 CrossRefGoogle Scholar
  46. 46.
    Curti M, Kirsch A, Granone LI, Tarasi F, López-Robledo G, Bahnemann DW, Murshed MM, Gesing TM, Mendive CB (2018) Visible-light photocatalysis with mullite-type Bi2(Al1−xFex)4O9: striking the balance between bandgap narrowing and conduction band lowering. ACS Catal. 8:8844–8855.  https://doi.org/10.1021/acscatal.8b01210 CrossRefGoogle Scholar
  47. 47.
    Granone LI, Ulpe AC, Robben L, Klimke S, Jahns M, Renz F, Gesing TM, Bredow T, Dillert R, Bahnemann DW (2018) Effect of the degree of inversion on optical properties of spinel ZnFe2O4. Phys Chem Chem Phys 20:28267–28278.  https://doi.org/10.1039/C8CP05061A CrossRefGoogle Scholar
  48. 48.
    Curti M, Gesing TM, Murshed MM, Bredow T, Mendive CB (2013) Liebau density vector: a new approach to characterize lone electron pairs in mullite-type materials. Z. Kristallogr. Cryst. Mater. 228:629–634.  https://doi.org/10.1524/zkri.2013.1686 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Química, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del PlataMar del PlataArgentina
  2. 2.IFIMAR, CONICET/Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del PlataMar del PlataArgentina
  3. 3.Institut für Technische ChemieGottfried Wilhelm Leibniz Universität HannoverHannoverGermany
  4. 4.Institute of Inorganic Chemistry and CrystallographyUniversity of BremenBremenGermany
  5. 5.MAPEX Center for Materials and ProcessesUniversity of BremenBremenGermany
  6. 6.Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische ChemieUniversität BonnBonnGermany
  7. 7.Laboratory “Photoactive Nanocomposite Materials”Saint-Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations