Journal of Materials Science

, Volume 54, Issue 21, pp 13787–13809 | Cite as

Effect of service exposure on KCl corrosion attack of AISI 347H FG steel

  • Yohanes Chekol MaledeEmail author
  • Kristian Vinter Dahl
  • Melanie Montgomery
  • Flemming Bjerg Grumsen
  • John Hald
Metals & corrosion


The effect of ageing of AISI 347H FG austenitic steel on KCl-induced corrosion was investigated by comparing the corrosion attack on tube material previously service-exposed for 100000 h and that on an as-received tube. Cr-rich σ-phase precipitates were found mainly along grain boundaries in the microstructure of the service-exposed material, whereas no σ-phase was present in the as-received condition. Laboratory corrosion experiments were carried out using KCl-free and KCl-covered samples in a 15% (v/v) H2O (g) + 5% (v/v) O2 (g) + N2 (g) (balance) atmosphere at 600 °C for 168 h. Microstructural characterisation was performed before and after the corrosion experiments using light optical microscopy, X-ray diffraction spectroscopy, scanning electron microscopy with energy-dispersive X-ray analysis (SEM/EDX) and scanning transmission electron microscopy with energy-dispersive X-ray analysis (STEM/EDX). The presence of KCl resulted in increased attack, and the service-exposed material had increased attack compared to the as-received TP347H FG material; thus, the deepest attack was observed for KCl-covered previously service-exposed material where grain boundary internal attack occurred. The experimental investigations indicate preferential attack of the Cr-rich precipitates and the presence of chlorine at the corrosion front and Cr-rich precipitates (σ-phase) ahead of the corrosion front for KCl-covered service-exposed material. The findings suggest that service-exposed AISI 347H FG material may experience an increased KCl-induced corrosion attack caused by selective attack of the Cr-rich σ-phase.



This paper was written as part of the FORSKEL project ‘Biomass Corrosion Management’ with financial support from (Grant no 2015-1-12289) and Oersted. Thanks go to Aalborg Forsyning for providing the exposed tube.


  1. 1.
    Tanaka H, Murata M, Abe F, Irie H (2001) Microstructural evolution and change in hardness in type 304H stainless steel during long-term creep. Mater Sci Eng A 319:788–791. CrossRefGoogle Scholar
  2. 2.
    Plaut R, Herrera C, Escriba D (2007) A short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance. Mater Res 10:453–460. CrossRefGoogle Scholar
  3. 3.
    Farneze HN, Maior Tavares Sergio S, Pardal JM et al (2015) Effects of thermal aging on microstructure and corrosion resistance of AISI 317L steel weld metal in the FSW process. Mater Res J Mater 18:98–103. CrossRefGoogle Scholar
  4. 4.
    Jonsson T, Karlsson S, Hooshyar H et al (2016) Oxidation after breakdown of the chromium-rich scale on stainless steels at high temperature: internal oxidation. Oxid Met 85:509–536. CrossRefGoogle Scholar
  5. 5.
    Nielsen HP, Baxter LL, Sclippab G et al (2000) Deposition of potassium salts on heat transfer surfaces in straw-fired boilers: a pilot-scale study. Fuel 79:131–139. CrossRefGoogle Scholar
  6. 6.
    Frandsen FJ (2005) Utilizing biomass and waste for power production—a decade of contributing to the understanding, interpretation and analysis of deposits and corrosion products. Fuel 84:1277–1294. CrossRefGoogle Scholar
  7. 7.
    Blomberg T (2006) Which are the right test conditions for the simulation of high temperature alkali corrosion in biomass combustion? Mater Corros 57:170–175. CrossRefGoogle Scholar
  8. 8.
    Israelsson N, Hellström K, Svensson JE, Johansson LG (2014) KCl-induced corrosion of the FeCrAl alloy Kanthal® AF at 600 °C and the effect of H2O. Oxid Met 83:1–27. CrossRefGoogle Scholar
  9. 9.
    Pettersson J, Asteman H, Svensson JE-E, Johansson L-GG (2005) KCl induced corrosion of a 304-type austenitic stainless steel at 600°C; the role of potassium. Oxid Met 64:23–41. CrossRefGoogle Scholar
  10. 10.
    O’Hagan CP, O’Brien BJ, Leen SB, Monaghan RFD (2015) A microstructural investigation into the accelerated corrosion of P91 steel during biomass co-firing. Corros Sci 109:101–114. CrossRefGoogle Scholar
  11. 11.
    Hansson AN, Pantleon K, Grumsen FB, Somers MAJ (2010) Microstructure evolution during steam oxidation of a Nb stabilized austenitic stainless steel. Oxid Met 73:289–309. CrossRefGoogle Scholar
  12. 12.
    Halvarsson M, Tang JE, Asteman H et al (2006) Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600 °C. Corros Sci 48:2014–2035. CrossRefGoogle Scholar
  13. 13.
    Asteman H, Svensson J-E, Norell M, Johansson L-G (2000) Influence of water vapor and flow rate on the high-temperature oxidation of 304L; effect of chromium oxide hydroxide evaporation. Oxid Met 54:11–26. CrossRefGoogle Scholar
  14. 14.
    Asteman H, Svensson J-E, Johansson L-G (2002) Oxidation of 310 steel in H2O/O2 mixtures at 600 °C: the effect of water-vapour-enhanced chromium evaporation. Corros Sci 44:2635–2649. CrossRefGoogle Scholar
  15. 15.
    Pettersson J, Svensson J-E, Johansson L-G (2009) KCl-induced corrosion of a 304-type austenitic stainless steel in O2 and in O2 + H2O environment: the influence of temperature. Oxid Met 72:159–177. CrossRefGoogle Scholar
  16. 16.
    Wang F, Shu Y (2003) Influence of Cr content on the corrosion of Fe–Cr alloys: the synergistic effect of NaCl and water vapor. Oxid Met 59:201–214. CrossRefGoogle Scholar
  17. 17.
    Shu Y, Wang F, Wu W (1999) Synergistic effect of NaCl and water vapor on the corrosion of 1Cr11Ni2 W-2MoV steel at 500–700°C. Oxid Met OXIDAT Met 51:97–110. CrossRefGoogle Scholar
  18. 18.
    Okoro SC, Montgomery M, Frandsen FJ, Pantleon K (2015) Effect of water vapor on high-temperature corrosion under conditions mimicking biomass firing. Energy Fuels 29:5802–5815. CrossRefGoogle Scholar
  19. 19.
    Erneman J, Nylöf L, Nilsson J-O, Andrén H-O (2004) Quantitative metallography of sigma phase precipitates in AISI 347 stainless steel—a comparison between different methods. Mater Sci Technol 20:1245–1251. CrossRefGoogle Scholar
  20. 20.
    Erneman J, Schwind M, Nylöf L et al (2005) Comparison between quantitative metallography and modeling of σ-phase particle growth in AISI 347 stainless steel. Metall Mater Trans A 36:2595–2600. CrossRefGoogle Scholar
  21. 21.
    Tavares SSM, Moura V, da Costa VC et al (2009) Microstructural changes and corrosion resistance of AISI 310S steel exposed to 600–800 °C. Mater Charact 60:573–578. CrossRefGoogle Scholar
  22. 22.
    West D, Hulance J, Higginson RL, Wilcox GD (2013) σ-phase precipitation in 347HFG stainless steel. Mater Sci Technol 29:835–842. CrossRefGoogle Scholar
  23. 23.
    Della Rovere CA, Castro-Rebello M, Kuri SE (2013) Corrosion behavior analysis of an austenitic stainless steel exposed to fire. Eng Fail Anal 31:40–47. CrossRefGoogle Scholar
  24. 24.
    Minami Y, Kimura H, Ihara Y (1986) Microstructural changes in austenitic stainless steels during long-term aging. Mater Sci Technol 2:795–806. CrossRefGoogle Scholar
  25. 25.
    Meier GH, Jung K, Mu N et al (2010) Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe–Cr and Fe–Cr–X alloys. Oxid Met 74:319–340. CrossRefGoogle Scholar
  26. 26.
    Giggins CS, Pettit FS (1980) Corrosion of metals and alloys in mixed gas environments at elevated temperatures. Oxid Met I:363–413. CrossRefGoogle Scholar
  27. 27.
    Huenert D, Kranzmann A (2011) Impact of oxyfuel atmospheres H2O/CO2/O2 and H2O/CO2 on the oxidation of ferritic-martensitic and austenitic steels. Corros Sci 53:2306–2317. CrossRefGoogle Scholar
  28. 28.
    Guan K, Xu X, Xu H, Wang Z (2005) Effect of aging at 700 °C on precipitation and toughness of AISI 321 and AISI 347 austenitic stainless steel welds. Nucl Eng Des 235:2485–2494. CrossRefGoogle Scholar
  29. 29.
    Malede YC, Montgomery M, Dahl KV, Hald J (2018) Effect of microstructure on KCl corrosion attack of modified AISI 310 steel. Mater High Temp 35:243–254. CrossRefGoogle Scholar
  30. 30.
    Korcakova L, Montgomery M, Jensen HT, Ab V (2013) Investigations of superheater materials from Nordjyllandsværket coal-fired plant after 100000 hours service. In: Auerkari P, Veivo J (eds) International conference on life management and maintenance for power plants. VTT Technology 106, pp 458–476Google Scholar
  31. 31.
    Astm Standard (2012) E112-12:Standard Test methods for determining average grain size. ASTM Int E112-12:1–27.
  32. 32.
    Kiamehr S, Dahl KV, Montgomery M, Somers MAJ (2016) KCl-induced high temperature corrosion of selected commercial alloys: part II: alumina and silica-formers. Mater Corros 67:26–38. CrossRefGoogle Scholar
  33. 33.
    Jan-Olof A, Helander T, Höglund L et al (2002) Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26:273–312. CrossRefGoogle Scholar
  34. 34.
    Villanueva DME, Junior FCP, Plaut RL, Padilha AF (2006) Comparative study on sigma phase precipitation of three types of stainless steels: austenitic, superferritic and duplex. Mater Sci Technol 22:1098–1104. CrossRefGoogle Scholar
  35. 35.
    van der Pluijm BA, Lee JH, Peacor DR (1988) Analytical electron microscopy and the problem of potassium diffusion. Clays Clay Miner 36:498–504CrossRefGoogle Scholar
  36. 36.
    Goldstein JI, Newbury DE, Michael JR et al (2018) Trace analysis by SEM/EDS. Scanning electron microscopy and X-ray microanalysis. Springer, New York, pp 341–357CrossRefGoogle Scholar
  37. 37.
    Padilha AF, Rios PR (2002) Decomposition of austenite in austenitic stainless steels. ISIJ Int 42:325–327. CrossRefGoogle Scholar
  38. 38.
    Gheno T, Monceau D, Young DJ (2013) Kinetics of breakaway oxidation of Fe–Cr and Fe–Cr–Ni alloys in dry and wet carbon dioxide. Corros Sci 77:246–256. CrossRefGoogle Scholar
  39. 39.
    Ericsson T (1970) A study of the Cr-depleted surface layers formed on four Cr–Ni steels during oxidation in steam at 600 °C and 800 °C. Oxid Met 2:401–417. CrossRefGoogle Scholar
  40. 40.
    Jonsson T, Froitzheim J, Pettersson J et al (2009) The influence of KCl on the corrosion of an Austenitic stainless steel (304L) in oxidizing humid conditions at 600°C: a microstructural study. Oxid Met 72:213–239. CrossRefGoogle Scholar
  41. 41.
    Mu N, Jung KY, Yanar NM et al (2012) Water vapor effects on the oxidation behavior of Fe–Cr and Ni–Cr alloys in atmospheres relevant to oxy-fuel combustion. Oxid Met 78:221–237. CrossRefGoogle Scholar
  42. 42.
    Streicher MA, Begum S (2016) Corrosion, intergranular. Reference module in materials science and materials engineering. Elsevier, Amsterdam, pp 3–5Google Scholar
  43. 43.
    Engelberg DL (2010) Intergranular corrosion. Shreir’s corrosion. Elsevier, Amsterdam, pp 810–827CrossRefGoogle Scholar
  44. 44.
    Kim CS, Moon SJ, Kong WS (2016) Effect of sensitization treatment on corrosion properties in austenitic stainless steel 304. Mater Sci Forum 857:232–236. CrossRefGoogle Scholar
  45. 45.
    Matula M, Hyspecka L, Svoboda M et al (2001) Intergranular corrosion of AISI 316L steel. Mater Charact 46:203–210. CrossRefGoogle Scholar
  46. 46.
    Trindade VB, Krupp U, Hanjari BZ et al (2005) Effect of alloy grain size on the high-temperature oxidation behavior of the austenitic steel TP 347. Mater Res 8:371–375. CrossRefGoogle Scholar
  47. 47.
    Peng X, Yan J, Zhou Y, Wang F (2005) Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air. Acta Mater 53:5079–5088. CrossRefGoogle Scholar
  48. 48.
    Teranishi H, Sawaragi Y, Kubota M, Hayase Y (1989) Fine-grained TP 347 H steel tubing with high elevated-temperature strength and corrosion resistance for boiler applicationsGoogle Scholar
  49. 49.
    Kim JH, Kim DI, Suwas S et al (2013) Grain-size effects on the high-temperature oxidation of modified 304 austenitic stainless steel. Oxid Met 79:239–247. CrossRefGoogle Scholar
  50. 50.
    Fujikawa H, Iijima Y (2013) Effect of grain size on the high temperature oxidation behaviour of austenitic stainless steels. Defect Diffus Forum 333:149–155. CrossRefGoogle Scholar
  51. 51.
    Viitala H, Galfi I, Taskinen P (2015) Initial oxidation behaviour of niobium stabilized TP347H austenitic stainless steel—effect of grain size and temperature. Mater Corros 66:851–862. CrossRefGoogle Scholar
  52. 52.
    Li YS, Spiegel M, Shimada S (2005) Corrosion behaviour of various model alloys with NaCl–KCl coating. Mater Chem Phys 93:217–223. CrossRefGoogle Scholar
  53. 53.
    Liu C, Little JA, Henderson PJ, Ljung P (2001) Corrosion of TP347H FG stainless steel in a biomass fired PF utility boiler. J Mater Sci 36:1015–1026. CrossRefGoogle Scholar
  54. 54.
    Grabke HJ, Reese E, Spiegel M (1995) The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits. Corros Sci 37:1023–1043. CrossRefGoogle Scholar
  55. 55.
    Nguyen TD, Zhang J, Young DJ (2014) Effects of silicon on high temperature corrosion of Fe–Cr and Fe–Cr–Ni alloys in carbon dioxide. Oxid Met 81:549–574. CrossRefGoogle Scholar
  56. 56.
    Li YSS, Spiegel M, Shimada S (2004) Effect of Al/Si addition on KCl induced corrosion of 9% Cr steel. Mater Lett 58:3787–3791. CrossRefGoogle Scholar
  57. 57.
    Bender R, Schütze M (2003) The role of alloying elements in commercial alloys for corrosion resistance in oxidizing-chloridizing atmospheres. Part I: literature evaluation and thermodynamic calculations on phase stabilities. Mater Corros 54:567–586. CrossRefGoogle Scholar
  58. 58.
    Latreche H, Doublet S, Schütze M (2009) Development of corrosion assessment diagrams for high temperature chlorine corrosion. Part I: state of the art and development of the basis for a new extended approach. Oxid Met 72:1–30. CrossRefGoogle Scholar
  59. 59.
    Grabke HJ, Spiegel M, Zahs A (2004) Role of alloying elements and carbides in the chlorine-induced corrosion of steels and alloys. Mater Res 7:89–95. CrossRefGoogle Scholar
  60. 60.
    Uusitalo MA, Backman R, Berger L-M et al (2002) Oxidation resistance of carbides in chlorine-containing atmospheres. High Temp Mater Process 21:307–320. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations