Advertisement

Journal of Materials Science

, Volume 54, Issue 21, pp 13715–13723 | Cite as

Co-doped SnS2 nanosheet array for efficient oxygen evolution reaction electrocatalyst

  • Meiwen Jiang
  • Yue Huang
  • Wei Sun
  • Xiaojun ZhangEmail author
Energy materials
  • 49 Downloads

Abstract

Designing highly active electrocatalysts with unique nanostructures is critical to increasing oxygen evolution reaction (OER) electrocatalytic efficiency, but high overpotentials and poor cycle stability remain a challenging issue. Herein, we directly grow a small amount of Co-doped SnS2 nanosheet array on the surface of carbon fiber by a simple one-step solvothermal method and study the effect of different Co/Sn ratio (x = 0, 0.05, 0.15, 0.25) on the morphology of SnS2. The Co-doped SnS2 nanosheet array with x = 0.15 exhibited the most active sites and the most excellent OER performance. It has an overpotential of 281 mV at a current density of 30 mA cm−2 and a low Tafel slope of 62 mV dec−1, which is much lower than pure SnS2. Such good performance is attributed to the high intrinsic activity and superaerophobic surface property.

Notes

Acknowledgements

This work is financially supported by the projects (Nos. 21371007, 21675001) from National Natural Science Foundation of China, Anhui Provincial Natural Science Foundation for Distinguished Youth (1408085J03), the Programs for Science and Technology Development of Anhui Province (1501021019, 1604a0902180), and the Program for Innovative Research Team at Anhui Normal University.

Supplementary material

10853_2019_3856_MOESM1_ESM.docx (10 mb)
Supplementary material 1 (DOCX 10200 kb)

References

  1. 1.
    Lombardo L, Yang H, Züttel A (2019) Study of borohydride ionic liquids as hydrogen storage materials. J Energy Chem 33:17–21CrossRefGoogle Scholar
  2. 2.
    Huang J, Wei Z, Liao J, Ni W, Wang C, Ma J (2019) Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: beyond MoS2. J Energy Chem 33:100–124CrossRefGoogle Scholar
  3. 3.
    Jiang S, Liu Y, Xie W, Shao M (2019) Electrosynthesis of hierarchical NiLa-layered double hydroxide electrode for efficient oxygen evolution reaction. J Energy Chem 33:125–129CrossRefGoogle Scholar
  4. 4.
    Liu J, Liang J, Wang C, Ma J (2019) Electrospun CoSe@N-doped carbon nanofibers with highly capacitive Li storage. J Energy Chem 33:160–166CrossRefGoogle Scholar
  5. 5.
    Aneke M, Wang M (2016) Energy storage technologies and real life applications—a state of the art review. Appl Energy 179:350–377CrossRefGoogle Scholar
  6. 6.
    Bernicke M, Eckhardt B, Lippitz A, Ortel E, Bernsmeier D, Schmack R, Kraehnert R (2016) Synthesis and OER activity of NiO coatings with micelle-templated mesopore structure. ChemistrySelect 1:482–489CrossRefGoogle Scholar
  7. 7.
    Han X, Tong X, Wu G, Yang N, Guo XY (2018) Carbon fibers supported NiSe nanowire arrays as efficient and flexible electrocatalysts for the oxygen evolution reaction. Carbon 129:245–251CrossRefGoogle Scholar
  8. 8.
    Yin J, Li Y, Lv F, Fan Q, Zhao YQ, Zhang Q, Wang W, Cheng F, Xi P, Guo S (2017) NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn–Air batteries. ACS Nano 11:2275–2283CrossRefGoogle Scholar
  9. 9.
    Liu T, Xie L, Yang J, Kong R, Du G, Asiri AM, Sun X, Chen L (2017) Self-standing CoP nanosheets array: a three-dimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media. ChemElectroChem 4:1840–1845CrossRefGoogle Scholar
  10. 10.
    Zhao J, Li X, Cui G, Sun X (2018) Highly-active oxygen evolution electrocatalyzed by an Fe-doped NiCr2O4 nanoparticle film. Chem Commun 54:5462–5465CrossRefGoogle Scholar
  11. 11.
    Wang Z, Ren X, Wang L, Cui G, Wang H, Sun X (2018) A hierarchical CoTe2–MnTe2 hybrid nanowire array enables high activity for oxygen evolution reactions. Chem Commun 54:10993–10996CrossRefGoogle Scholar
  12. 12.
    Liu T, Liu Q, Asiri AM, Luo Y, Sun X (2015) An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chem Commun 51:16683–16686CrossRefGoogle Scholar
  13. 13.
    Dai Z, Geng H, Wang J, Luo Y, Li B, Zong Y, Yang J, Guo Y, Zheng Y, Wang X, Yan Q (2017) Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting. ACS Nano 11:11031–11040CrossRefGoogle Scholar
  14. 14.
    Wang C, Nie XG, Shi Y, Zhou Y, Xu JJ, Xia XH, Chen HY (2017) Direct plasmon-accelerated electrochemical reaction on gold nanoparticles. ACS Nano 11:5897–5905CrossRefGoogle Scholar
  15. 15.
    Tian Y, Xu L, Bao J, Qian J, Su H, Li H, Gu H, Yan C, Li H (2019) Hollow cobalt oxide nanoparticles embedded in nitrogen-doped carbon nanosheets as an efficient bifunctional catalyst for Zn–air battery. J Energy Chem 33:59–66CrossRefGoogle Scholar
  16. 16.
    Bi Y, Cai Z, Zhou D, Tian Y, Zhang Q, Zhang Q, Kuang Y, Li Y, Sun X, Duan X (2018) Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction. J Catal 358:100–107CrossRefGoogle Scholar
  17. 17.
    Valdés Á, Qu ZW, Kroes GJ, Rossmeisl J, Nørskov JK (2008) Oxidation and photo-oxidation of water on TiO2 surface. J Phys Chem C 112:9872–9879CrossRefGoogle Scholar
  18. 18.
    Kim D, Kim D, Jeon Y, Li Y, Lee J, Kang J, Lee LYS, Piao Y (2019) Zeolitic imidazolate frameworks derived novel polyhedral shaped hollow Co–B–O@Co3O4 electrocatalyst for oxygen evolution reaction. Electrochim Acta 299:213–221CrossRefGoogle Scholar
  19. 19.
    Liu K, Zhang C, Sun Y, Zhang G, Shen X, Zou F, Zhang H, Wu Z, Wegener EC, Taubert CJ, Miller JT, Peng Z, Zhu Y (2018) High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction. ACS Nano 12:158–167CrossRefGoogle Scholar
  20. 20.
    Xue S, Chen L, Liu Z, Cheng HM, Ren W (2018) NiPS3 nanosheet–graphene composites as highly efficient electrocatalysts for oxygen evolution reaction. ACS Nano 12:5297–5305CrossRefGoogle Scholar
  21. 21.
    Davis AH, Hofman E, Chen K, Li ZJ, Khammang A, Zamani H, Franck JM, Maye MM, Meulenberg RW, Zheng W (2019) Exciton energy shifts and tunable dopant emission in manganese-doped two-dimensional CdS/ZnS core/shell nanoplatelets. Chem Mater 31:2516–2523CrossRefGoogle Scholar
  22. 22.
    Li ZJ, Hofman E, Davis AH, Khammang A, Wright JT, Dzikovski B, Meulenberg RW, Zheng W (2018) Complete dopant substitution by spinodal decomposition in Mn-doped two-dimensional CsPbCl3 nanoplatelets. Chem Mater 30:6400–6409CrossRefGoogle Scholar
  23. 23.
    Li ZJ, Hofman E, Davis AH, Maye MM, Zheng W (2018) General strategy for the growth of CsPbX 3 (X = Cl, Br, I) perovskite nanosheets from the assembly of nanorods. Chem Mater 30:3854–3860CrossRefGoogle Scholar
  24. 24.
    Zheng M, Guo K, Jiang WJ, Tang T, Wang X, Zhou P, Du J, Zhao Y, Xu C, Hu JS (2019) When MoS2 meets FeOOH: a “one-stone-two-birds’’ heterostructure as a bifunctional electrocatalyst for efficient alkaline water splitting. Appl Catal B Environ 244:1004–1012CrossRefGoogle Scholar
  25. 25.
    Zhan C, Liu Z, Zhou Y, Guo M, Zhang X, Tu J, Ding L, Cao Y (2019) Triple hierarchy and double synergies of NiFe/Co9S8/carbon cloth: a new and efficient electrocatalyst for the oxygen evolution reaction. Nanoscale 11:3378–3385CrossRefGoogle Scholar
  26. 26.
    Xiong Q, Zhang X, Wang H, Liu G, Wang G, Zhang H, Zhao H (2018) One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. Chem Commun 54:3859–3862CrossRefGoogle Scholar
  27. 27.
    Liu Q, Xie L, Liu Z, Du G, Asiri AM, Sun X (2017) A Zn-doped Ni3S2 nanosheet array as a high-performance electrochemical water oxidation catalyst in alkaline solution. Chem Commun 53:12446–12449CrossRefGoogle Scholar
  28. 28.
    Liu T, Liang Y, Liu Q, Sun X, He Y, Asiri AM (2015) Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction. Electrochem Commun 60:92–96CrossRefGoogle Scholar
  29. 29.
    Yin J, Li Y, Lv F, Lu M, Sun K, Wang W, Wang L, Cheng F, Li Y, Xi P, Guo S (2017) Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn–Air batteries driven water splitting devices. Adv Mater 29:1704681.  https://doi.org/10.1002/adma.201704681 CrossRefGoogle Scholar
  30. 30.
    Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R, Liu S, Zhuang X, Feng X (2016) Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew Chem Inter Ed 55:6702–6707CrossRefGoogle Scholar
  31. 31.
    Yin L, Chai S, Huang J, Kong X, Wang J, Liu Y (2017) Preparation and enhanced lithium-ion storage performance of 3D network-like SnS2 anode. J Alloys Compd 727:1006–1013CrossRefGoogle Scholar
  32. 32.
    Yin L, Chai S, Ma J, Huang J, Kong X, Bai P, Liu Y (2017) Effects of binders on electrochemical properties of the SnS2 nanostructured anode of the lithium-ion batteries. J Alloys Compd 698:828–834CrossRefGoogle Scholar
  33. 33.
    Hu X, Peng Q, Zeng T, Shang B, Jiao X, Xi G (2019) Promotional role of nano TiO2 for pomegranate-like SnS2@C spheres toward enhanced sodium ion storage. Chem Eng J 363:213–223CrossRefGoogle Scholar
  34. 34.
    Parveen N, Ansari SA, Alamri HR, Ansari MO, Khan Z, Cho MH (2018) Facile synthesis of SnS2 nanostructures with different morphologies for high-performance supercapacitor applications. ACS Omega 3:1581–1588CrossRefGoogle Scholar
  35. 35.
    Li K, Ma J, Guan X, He H, Wang M, Zhang G, Zhang F, Fan X, Peng W, Li Y (2018) 3D self-supported Ni(PO3)2–MoO3 nanorods anchored on nickel foam for highly efficient overall water splitting. Nanoscale 10:22173–22179CrossRefGoogle Scholar
  36. 36.
    Zhu K, Zhu X, Yang W (2019) Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew Chem Int Ed 58:1252–1265CrossRefGoogle Scholar
  37. 37.
    Tang B, Yu ZG, Seng HL, Zhang N, Liu X, Zhang YW, Yang W, Gong H (2018) Simultaneous edge and electronic control of MoS2 nanosheets through Fe doping for an efficient oxygen evolution reaction. Nanoscale 10:20113–20119CrossRefGoogle Scholar
  38. 38.
    Wang K, Guo W, Yan S, Song H, Shi Y (2018) Hierarchical Co–FeS2/CoS2 heterostructures as a superior bifunctional electrocatalyst. RSC Adv 8:28684–28691CrossRefGoogle Scholar
  39. 39.
    Lu Z, Zhu W, Yu X, Zhang H, Li Y, Sun X, Wang X, Wang H, Wang J, Luo J, Lei X, Jiang L (2014) Ultrahigh hydrogen evolution performance of under-water “Superaerophobic” MoS2 nanostructured electrodes. Adv Mater 26:2683–2687CrossRefGoogle Scholar
  40. 40.
    Faber MS, Dziedzic R, Lukowski MA, Kaiser NS, Ding Q, Jin S (2014) High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J Am Chem Soc 136:10053–10061CrossRefGoogle Scholar
  41. 41.
    Li Y, Zhang H, Jiang M, Zhang Q, He P, Sun X (2017) 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Adv Funct Mater 27:1702513.  https://doi.org/10.1002/adfm.201702513 CrossRefGoogle Scholar
  42. 42.
    Zhu K, Liu H, Li M, Li X, Wang J, Zhu X, Yang W (2017) Atomic-scale topochemical preparation of crystalline Fe3+-doped β-Ni(OH)2 for an ultrahigh-rate oxygen evolution reaction. J Mater Chem A 5:7753–7758CrossRefGoogle Scholar
  43. 43.
    Li J, Liu G, Liu B, Min Z, Qian D, Jiang J, Li J (2018) Fe-doped CoSe2 nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes as an efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta 265:577–585CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Center for Nano Science and TechnologyAnhui Normal UniversityWuhuPeople’s Republic of China

Personalised recommendations