Advertisement

Journal of Materials Science

, Volume 54, Issue 21, pp 13651–13659 | Cite as

Synthesis and characterization of (Bi1−xRx)2Mn4O10: structural, spectroscopic and thermogravimetric analyses for R = Nd, Sm and Eu

  • Kowsik Ghosh
  • M. Mangir MurshedEmail author
  • Thorsten M. Gesing
Electronic materials
  • 55 Downloads

Abstract

Mullite-type Bi2Mn4O10 and R2Mn4O10 (R = rare earth element) compounds are isostructural and are of ongoing research attentions because of their interesting crystal structures and the associated multiferroic properties. We report three series of mullite-type (Bi1−xRx)2Mn4O10 compounds for R = Nd, Sm and Eu prepared by solid-state synthesis methods. Each phase of the solid solutions is characterized by X-ray powder diffraction followed by Rietveld refinement. Evolutions of the metric parameters, interatomic bond distances, average crystallite size and microstrain are carried out with respect to the compositional x-value. This study also emphasizes on how the crystal chemistry changes upon successive change of the stereochemical activity of the lone electron pair of the Bi3+ cation using the Wang–Liebau eccentricity parameter. Selective vibrational features have been discussed based on the Raman and Fourier transform infrared spectra. The thermal stability of the end-members is analyzed from the thermogravimetric data, demonstrating that the end-member Bi2Mn4O10 differently decomposes than that of the other R2Mn4O10 compounds.

Notes

Acknowledgements

Kowsik Ghosh gratefully thanks the University of Bremen for the financial supports. He also acknowledges DAAD (Funding ID: 57340829) and BISIP (Bremen International Students Internship Program) for their supports in partly finance this project.

Supplementary material

10853_2019_3852_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1747 kb)

References

  1. 1.
    Fischer RX (2005) The mullite-type family of crystal structures. In: Schneider H, Komarneni S (eds) Mullite. Wiley-VCH, Weinheim, pp 1–46Google Scholar
  2. 2.
    Muñoz A, Fernández-Díaz MT (2002) Magnetic structure and properties of BiMn2O5 oxide: A neutron diffraction study. Phys Rev B 65:144423.  https://doi.org/10.1103/physrevb.65.144423 CrossRefGoogle Scholar
  3. 3.
    Alonso JA, Casais MT, Martínez-Lope MJ, Martínez JL, Fernández-Díaz MT (1997) A structural study from neutron diffraction data and magnetic properties of RMn2O5 (R = La, rare earth). J Phys Condens Matter 9:8515–8526.  https://doi.org/10.1088/0953-8984/9/40/017 CrossRefGoogle Scholar
  4. 4.
    Volkova LM, Marinin DV (2009) Crystal chemistry aspects of the magnetically induced ferroelectricity in TbMn(2)O(5) and BiMn(2)O(5). J Phys Condens Matter 21:015903.  https://doi.org/10.1088/0953-8984/21/1/015903 CrossRefGoogle Scholar
  5. 5.
    Ziegler F, Köhler L, Gibhardt H, Gesing TM, Murshed MM, Sobolev O, Piovano A, Eckold G (2019) Characterization of multiferroic Bi2Mn4O10 by dielectric and neutron spectroscopy. Phys Status Solidi (b) 1800668:1–7.  https://doi.org/10.1002/pssb.201800668 Google Scholar
  6. 6.
    Sun ZH, Cheng BL, Dai S, Jin KJ, Zhou YL, Lu HB, Chen ZH, Yang GZ (2006) Effect of Ce substitution on magnetic and dielectric properties of BiMn2O5. J Appl Phys 99:084105.  https://doi.org/10.1063/1.2190716 CrossRefGoogle Scholar
  7. 7.
    Van Den Brink J, Khomskii DI (2008) Multiferroicity due to charge ordering. J Phys Condens Matter 20:434217.  https://doi.org/10.1088/0953-8984/20/43/434217 CrossRefGoogle Scholar
  8. 8.
    Kann ZR, Auletta JT, Hearn EW, Weber S-U, Becker KD, Schneider H, Lufaso MW (2012) Mixed crystal formation and structural studies in the mullite-type system Bi2Fe4O9–Bi2Mn4O10. J Solid State Chem 185:62–71.  https://doi.org/10.1016/j.jssc.2011.10.046 CrossRefGoogle Scholar
  9. 9.
    Niizeki N, Wachi M (1968) The crystal structures of Bi2Mn4O10, Bi2Al4O9 and Bi2Fe4O9. Z Krist 127:173–187.  https://doi.org/10.1524/zkri.1968.127.1-4.173 CrossRefGoogle Scholar
  10. 10.
    Murshed MM, Gesing TM (2013) Anisotropic thermal expansion and anharmonic phonon behavior of mullite-type Bi2Ga4O9. Mater Res Bull 48:3284–3291.  https://doi.org/10.1016/j.materresbull.2013.05.007 CrossRefGoogle Scholar
  11. 11.
    Mangir Murshed M, Mendive CB, Curti M, Šehović M, Friedrich A, Fischer M, Gesing TM (2015) Thermal expansion of mullite-type Bi2Al4O9: a study by X-ray diffraction, vibrational spectroscopy and density functional theory. J Solid State Chem 229:87–96.  https://doi.org/10.1016/j.jssc.2015.05.010 CrossRefGoogle Scholar
  12. 12.
    Murshed MM, Nénert G, Burianek M, Robben L, Mühlberg M, Schneider H, Fischer RX, Gesing TM (2013) Temperature-dependent structural studies of mullite-type Bi2Fe4O9. J Solid State Chem 197:370–378.  https://doi.org/10.1016/j.jssc.2012.08.062 CrossRefGoogle Scholar
  13. 13.
    Nguyen N, Legrain M, Ducouret A, Raveau B (1999) Distribution of Mn3+ and Mn4+ species between octahedral and square pyramidal sites in Bi2Mn4O10-type structure. J Mater Chem 9:731–734.  https://doi.org/10.1039/a808094a CrossRefGoogle Scholar
  14. 14.
    Curti M, Gesing TM, Murshed MM, Bredow T, Mendive CB (2013) Liebau density vector: a new approach to characterize lone electron pairs in mullite-type materials. Z Krist 288:629–634.  https://doi.org/10.1524/zkri.2013.1686 Google Scholar
  15. 15.
    Khomskii D (2009) Classifying multiferroics: mechanisms and effects. Physics (College Park, MD) 2:20.  https://doi.org/10.1103/physics.2.20 Google Scholar
  16. 16.
    MacKenzie KJD, Dougherty T, Barrel J (2008) The electronic properties of complex oxides of bismuth with the mullite structure. J Eur Ceram Soc 28:499–504.  https://doi.org/10.1016/j.jeurceramsoc.2007.03.012 CrossRefGoogle Scholar
  17. 17.
    Petit S, Balédent V, Doubrovsky C, Lepetit MB, Greenblatt M, Wanklyn B, Foury-Leylekian P (2013) Investigation of the electromagnon excitations in the multiferroic TbMn2O5. Phys Rev B 87:140301.  https://doi.org/10.1103/physrevb.87.140301 CrossRefGoogle Scholar
  18. 18.
    Vecchini C, Chapon L, Brown P, Chatterji T, Park S, Cheong S-W, Radaelli P (2008) Commensurate magnetic structures of RMn2O5 (R = Y, Ho, Bi) determined by single-crystal neutron diffraction. Phys Rev B 77:134434.  https://doi.org/10.1103/physrevb.77.134434 CrossRefGoogle Scholar
  19. 19.
    Retuerto M, Muñoz A, Martínez-Lope MJ, Garcia-Hernandez M, André G, Krezhov K, Alonso JA (2013) Influence of the Bi3+ electron lone pair in the evolution of the crystal and magnetic structure of La(1−x)Bi(x)Mn2O5 oxides. J Phys Condens Matter 25:216002.  https://doi.org/10.1088/0953-8984/25/21/216002 CrossRefGoogle Scholar
  20. 20.
    Brown ID (2002) The chemical bond in inorganic chemistry: the bond valence model. Oxford University Press, OxfordGoogle Scholar
  21. 21.
    Kirsch A, Murshed MM, Litterst FJ, Gesing TM (2019) Structural, spectroscopic, and thermoanalytic studies on Bi2Fe4O9: tunable properties driven by nano- and poly-crystalline states. J Phys Chem C 123:3161–3171.  https://doi.org/10.1021/acs.jpcc.8b09698 CrossRefGoogle Scholar
  22. 22.
    Burianek M, Krenzel TF, Schmittner M, Schreuer J, Fischer RX, Mühlberg M, Nénert G, Schneider H, Gesing TM (2012) Single crystal growth and characterization of mullite-type Bi2Mn4O10. Int J Mater Res 103:449–455CrossRefGoogle Scholar
  23. 23.
    Balzar D (1999) Voigt-function model in diffraction line-broadening analysis. IUCr Monographs on Crystallography 10, pp 94–124Google Scholar
  24. 24.
    Balzar D, Audebrand N, Daymond M, Fitch A, Hewat A, Langford JI, Bail A, Louer D, Masson O, McCowan C, Popa N, Stephens P, Toby B (2004) Size–strain line-broadening analysis of the ceria round-robin sample. Appl Crystallogr 37:911–924.  https://doi.org/10.1107/s0021889804022551 CrossRefGoogle Scholar
  25. 25.
    Popov G, Greenblatta M, McCarroll WH (2000) Synthesis of LnMn2O5 (Ln = Nd, Pr) crystals using fused salt electrolysis. Mater Res Bull 35:1661–1667.  https://doi.org/10.1016/s0025-5408(00)00372-x CrossRefGoogle Scholar
  26. 26.
    Kagomiya I, Matsumoto S, Kohn K, Fukuda Y, Shoubu T, Kimura H, Noda Y, Ikeda N (2003) Lattice distortion at ferroelectric transition of YMn2O5. Ferroelectrics 286:167–174.  https://doi.org/10.1080/00150190390206347 CrossRefGoogle Scholar
  27. 27.
    Popov YF, Kadomtseva AM, Vorob’ev GP, Sanina VA, Zvezdin AK, Tehranchi MM (2000) Low-temperature phase transition in EuMn2O5 induced by a strong magnetic field. Phys B 284:1402–1403.  https://doi.org/10.1016/s0921-4526(99)02565-x CrossRefGoogle Scholar
  28. 28.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767.  https://doi.org/10.1107/s0567739476001551 CrossRefGoogle Scholar
  29. 29.
    Alonso JA, Casais MT, Martínez-Lope MJ, Rasines I (1997) High oxygen pressure preparation, structural refinement, and thermal behavior of RMn2O5 (R = La, Pr, Nd, Sm, Eu). J Solid State Chem 129:105–112.  https://doi.org/10.1006/jssc.1996.7237 CrossRefGoogle Scholar
  30. 30.
    Wang X, Liebau F (2007) Influence of polyhedron distortions on calculated bond-valence sums for cations with one lone electron pair. Acta Crystallogr B 63:216–228.  https://doi.org/10.1107/s0108768106055911 CrossRefGoogle Scholar
  31. 31.
    Silva Júnior FM, Paschoal CWA, Almeida RM, Moreira RL, Paraguassu W, Castro Junior MC, Ayala AP, Kann ZR, Lufaso MW (2013) Room-temperature vibrational properties of the BiMn2O5 mullite. Vib Spectrosc 66:43–49.  https://doi.org/10.1016/j.vibspec.2013.01.010 CrossRefGoogle Scholar
  32. 32.
    Li C, Thampy S, Zheng Y, Kweun JM, Ren Y, Chan JY, Kim H, Cho M, Kim YY, Hsu JWP, Cho K (2016) Thermal stability of mullite RMn2O5 (R = Bi, Y, Pr, Sm or Gd): combined density functional theory and experimental study. J Phys Condens Matter 28:125602.  https://doi.org/10.1088/0953-8984/28/12/125602 CrossRefGoogle Scholar
  33. 33.
    Kerr J (1984) CRC handbook of chemistry and physics, 64th edn. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Bremen, Institute of Inorganic Chemistry and CrystallographyBremenGermany
  2. 2.University of Bremen, MAPEX Center for Materials and ProcessesBremenGermany

Personalised recommendations