Advertisement

Journal of Materials Science

, Volume 54, Issue 21, pp 13619–13634 | Cite as

In- and through-plane conductivity of 8YSZ films produced at room temperature by aerosol deposition

  • Jörg ExnerEmail author
  • Jaroslaw Kita
  • Ralf Moos
Electronic materials
  • 164 Downloads

Abstract

Aerosol deposition is a unique spray coating process to deposit dense ceramic films directly at room temperature just by spraying a dry powder, without any binder or additional sintering step needed. Therefore, it is a very promising coating method for functional materials that may be used to produce a variety of electrochemical devices, solid oxide fuel cells or gas sensors. However, functional properties like the electrical conductivity significantly depend on the microstructure of the produced film. Consequently, anisotropic film properties may occur even for isotropic functional materials. In this work, films of oxide ion-conducting yttria-stabilized zirconia (YSZ) were produced by aerosol deposition. The orientation-dependent electrical conductivity was measured using two different electrode configurations: one for the in-plane conductivity and another one for through-plane measurements. A slight anisotropy was observed, attributed to the present film morphology. In particular, the grain boundaries influenced the total conductivity. Furthermore, a thermal post-deposition treatment significantly affected the total conductivity of aerosol-deposited YSZ films.

Notes

Acknowledgements

Funding from the Bayerische Forschungsstiftung (BFS) in the framework of the collaborative research project ForOxiE2 is gratefully acknowledged (Grant AZ-1143-14). The authors are indebted to Mrs. Mergner and to the KeyLab Electron and Optical Microscopy of the Bavarian Polymer Institute (BPI) for SEM imaging.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Akedo J (2006) Microstructure of ceramic thick film formed by aerosol deposition and its applications to microactuator. Integr Ferroelectr 80(1):55–65.  https://doi.org/10.1080/10584580600656221 CrossRefGoogle Scholar
  2. 2.
    Choi J-J, Cho K-S, Choi J-H, Ryu J, Hahn B-D, Yoon W-H, Kim J-W, Ahn C-W, Yun J, Park D-S (2012) Low temperature preparation and characterization of LSGMC based IT-SOFC cell by aerosol deposition. J Eur Ceram Soc 32(1):115–121.  https://doi.org/10.1016/j.jeurceramsoc.2011.07.036 CrossRefGoogle Scholar
  3. 3.
    Choi J-J, Choi J-H, Ryu J, Hahn B-D, Kim J-W, Ahn C-W, Yoon W-H, Park D-S (2012) Microstructural evolution of YSZ electrolyte aerosol-deposited on porous NiO–YSZ. J Eur Ceram Soc 32(12):3249–3254.  https://doi.org/10.1016/j.jeurceramsoc.2012.04.024 CrossRefGoogle Scholar
  4. 4.
    Jung J-H, Hahn B-D, Yoon W-H, Park D-S, Choi J-J, Ryu J, Kim J-W, Ahn C-W, Song K-M (2012) Halogen plasma erosion resistance of rare earth oxide films deposited on plasma sprayed alumina coating by aerosol deposition. J Eur Ceram Soc 32(10):2451–2457.  https://doi.org/10.1016/j.jeurceramsoc.2012.02.019 CrossRefGoogle Scholar
  5. 5.
    Piechowiak MA, Henon J, Durand-Panteix O, Etchegoyen G, Coudert V, Marchet P, Rossignol F (2014) Growth of dense Ti3SiC2 MAX phase films elaborated at room temperature by aerosol deposition method. J Eur Ceram Soc 34(5):1063–1072.  https://doi.org/10.1016/j.jeurceramsoc.2013.11.019 CrossRefGoogle Scholar
  6. 6.
    Baba S, Sato H, Huang L, Uritani A, Funahashi R, Akedo J (2014) Formation and characterization of polyethylene terephthalate-based (Bi0.15Sb0.85)2Te3 thermoelectric modules with CoSb3 adhesion layer by aerosol deposition. J Alloys Compd 589:56–60.  https://doi.org/10.1016/j.jallcom.2013.11.180 CrossRefGoogle Scholar
  7. 7.
    Lee MW, Park JJ, Kim DY, Yoon SS, Kim HY, Kim DH, James SC, Chandra S, Coyle T, Ryu JH, Yoon WH, Park DS (2011) Optimization of supersonic nozzle flow for titanium dioxide thin-film coating by aerosol deposition. J Aerosol Sci 42(11):771–780.  https://doi.org/10.1016/j.jaerosci.2011.07.006 CrossRefGoogle Scholar
  8. 8.
    Park H, Kim J, Lee C (2015) Dynamic fragmentation process and fragment microstructure evolution of alumina particles in a vacuum kinetic spraying system. Scr Mater 108:72–75.  https://doi.org/10.1016/j.scriptamat.2015.06.020 CrossRefGoogle Scholar
  9. 9.
    Kim C-W, Choi J-H, Kim H-J, Lee D-W, Hyun C-Y, Nam S-M (2012) Effects of interlayer roughness on deposition rate and morphology of aerosol-deposited Al2O3 thick films. Ceram Int 38(7):5621–5627.  https://doi.org/10.1016/j.ceramint.2012.04.003 CrossRefGoogle Scholar
  10. 10.
    Imanaka Y, Hayashi N, Takenouchi M, Akedo J (2007) Aerosol deposition for post-LTCC. J Eur Ceram Soc 27(8–9):2789–2795.  https://doi.org/10.1016/j.jeurceramsoc.2006.11.055 CrossRefGoogle Scholar
  11. 11.
    Yin Z-J, Wang S-B, Fu W, Tan X-H, Tao S-Y, Ding C-X (2011) Evolution and prospect of thermal spraying technique. J Inorg Mater 26(3):225–232.  https://doi.org/10.3724/SP.J.1077.2011.00225 CrossRefGoogle Scholar
  12. 12.
    Schmidt T, Assadi H, Gärtner F, Richter H, Stoltenhoff T, Kreye H, Klassen T (2009) From particle acceleration to impact and bonding in cold spraying. J Therm Spray Technol 18(5–6):794–808.  https://doi.org/10.1007/s11666-009-9357-7 CrossRefGoogle Scholar
  13. 13.
    Akedo J (2008) Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices. J Therm Spray Technol 17(2):181–198.  https://doi.org/10.1007/s11666-008-9163-7 CrossRefGoogle Scholar
  14. 14.
    Exner J, Schubert M, Hanft D, Kita J, Moos R (2019) How to treat powders for the room temperature aerosol deposition method to avoid porous, low strength ceramic films. J Eur Ceram Soc 39(2–3):592–600.  https://doi.org/10.1016/j.jeurceramsoc.2018.08.008 CrossRefGoogle Scholar
  15. 15.
    Hanft D, Exner J, Schubert M, Stöcker T, Fuierer P, Moos R (2015) An overview of the aerosol deposition method: process fundamentals and new trends in materials applications. J Ceram Sci Technol 6(3):147–182.  https://doi.org/10.4416/JCST2015-00018 CrossRefGoogle Scholar
  16. 16.
    Akedo J (2000) Study on rapid micro-structuring using Jet molding—present status and structuring properties toward HARMST. Microsyst Technol 6(6):205–209.  https://doi.org/10.1007/s005420000055 CrossRefGoogle Scholar
  17. 17.
    Lebedev M, Akedo J (2002) What thickness of the piezoelectric layer with high breakdown voltage is required for the microactuator? Jpn J Appl Phys 41(Part 1, No. 5B):3344–3347.  https://doi.org/10.1143/JJAP.41.3344 CrossRefGoogle Scholar
  18. 18.
    Park J-H, Akedo J (2008) Fabrication and scanning-angle temperature dependence of metal-based, optical resonant scanners with PZT actuation. IEEE Trans Ultrason Ferroelect Freq Contr 55(5):942–945.  https://doi.org/10.1109/TUFFC.2008.736 CrossRefGoogle Scholar
  19. 19.
    Ryu J, Choi J-J, Hahn B-D, Park D-S, Yoon W-H, Kim K-H (2007) Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K0.5Na0.5)NbO3 thick films by aerosol deposition. Appl Phys Lett 90(15):152901.  https://doi.org/10.1063/1.2720751 CrossRefGoogle Scholar
  20. 20.
    Sung HK, Wang C, Kim NY (2015) Ultra-smooth BaTiO3 surface morphology using chemical mechanical polishing technique for high-k metal–insulator–metal capacitors. Mater Sci Semicond Process 40:516–522.  https://doi.org/10.1016/j.mssp.2015.07.016 CrossRefGoogle Scholar
  21. 21.
    Furuta T, Hatta S, Kigoshi Y, Hoshina T, Takeda H, Tsurumi T (2011) Dielectric properties of nanograined BaTiO3 ceramics fabricated by aerosol deposition method. Key Eng Mater 485:183–186.  https://doi.org/10.4028/www.scientific.net/KEM.485.183 CrossRefGoogle Scholar
  22. 22.
    Kim H-K, Lee S-H, Kim SI, Woo Lee C, Rag Yoon J, Lee S-G, Lee Y-H (2014) Dielectric strength of voidless BaTiO3 films with nano-scale grains fabricated by aerosol deposition. J Appl Phys 115(1):14101.  https://doi.org/10.1063/1.4851675 CrossRefGoogle Scholar
  23. 23.
    Popovici D, Tsuda H, Akedo J (2009) Postdeposition annealing effect on (Ba0.6, Sr0.4)TiO3 thick films deposited by aerosol deposition method. J Appl Phys 105(6):61638.  https://doi.org/10.1063/1.3086197 CrossRefGoogle Scholar
  24. 24.
    Stöcker T, Exner J, Schubert M, Streibl M, Moos R (2016) Influence of oxygen partial pressure during processing on the thermoelectric properties of aerosol-deposited CuFeO2. Materials 9(4):227.  https://doi.org/10.3390/ma9040227 CrossRefGoogle Scholar
  25. 25.
    Sinha BB, Chung KC (2013) Fabrication and properties of MgB2 coated superconducting tapes. J Supercond Novel Magn 26(5):1507–1511.  https://doi.org/10.1007/s10948-012-1957-7 CrossRefGoogle Scholar
  26. 26.
    Kauffmann-Weiss S, Hässler W, Guenther E, Scheiter J, Denneler S, Glosse P, Berthold T, Oomen M, Arndt T, Stöcker T, Hanft D, Moos R, Weiss M, Weis F, Holzapfel B (2017) Superconducting properties of thick films on hastelloy prepared by the aerosol deposition method with ex situ MgB2 powder. IEEE Trans Appl Supercond 27(4):6200904.  https://doi.org/10.1109/TASC.2017.2669479 CrossRefGoogle Scholar
  27. 27.
    Sinha BB, Chung KC, Jang SH, Park DS, Hahn B-D (2011) Fabrication of magnesium diboride thin films by aerosol deposition. Prog Supercond 13(2):122–126Google Scholar
  28. 28.
    Sugimoto S, Nakamura M, Maki T, Kagotani T, Inomata K, Akedo J, Hirosawa S, Shigemoto Y (2006) Nd2Fe14B/Fe3B nanocomposite film fabricated by aerosol deposition method. J Alloys Compd 408–412:1413–1416.  https://doi.org/10.1016/j.jallcom.2005.04.044 CrossRefGoogle Scholar
  29. 29.
    Sugimoto S, Maeda T, Kobayashi R, Akedo J, Lebedev M, Inomata K (2003) Magnetic properties of Sm–Fe–N thick film magnets prepared by the aerosol deposition method. IEEE Trans Magn 39(5):2986–2988.  https://doi.org/10.1109/TMAG.2003.816715 CrossRefGoogle Scholar
  30. 30.
    Maki T, Sugimoto S, Kagotani T, Inomata K, Akedo J (2004) Effect of applied magnetic field on magnetic properties of Sm–Fe–N films prepared by aerosol deposition method. Mater Trans 45(8):2626–2629CrossRefGoogle Scholar
  31. 31.
    Maki T, Sugimoto S, Kagotani T, Inomata K, Akedo J, Ishikawa T, Ohmori K (2006) Influence of deposition angle on the magnetic properties of Sm–Fe–N films fabricated by aerosol deposition method. J Alloys Compd 408–412:1409–1412.  https://doi.org/10.1016/j.jallcom.2005.04.040 CrossRefGoogle Scholar
  32. 32.
    Inada R, Okada T, Bando A, Tojo T, Sakurai Y (2017) Properties of garnet-type Li6La3ZrTaO12 solid electrolyte films fabricated by aerosol deposition method. Prog Nat Sci Mater Int 27(3):350–355.  https://doi.org/10.1016/j.pnsc.2017.06.002 CrossRefGoogle Scholar
  33. 33.
    Hanft D, Exner J, Moos R (2017) Thick-films of garnet-type lithium ion conductor prepared by the aerosol deposition method: the role of morphology and annealing treatment on the ionic conductivity. J Power Sources 361:61–69.  https://doi.org/10.1016/j.jpowsour.2017.06.061 CrossRefGoogle Scholar
  34. 34.
    Choi J-J, Ryu J, Hahn B-D, Yoon W-H, Lee B-K, Choi J-H, Park D-S (2010) Oxidation behavior of ferritic steel alloy coated with LSM–YSZ composite ceramics by aerosol deposition. J Alloys Compd 492(1–2):488–495.  https://doi.org/10.1016/j.jallcom.2009.11.146 CrossRefGoogle Scholar
  35. 35.
    Choi J-J, Ahn C-W, Kim J-W, Ryu J, Hahn B-D, Yoon W-H, Park D-S (2015) Anode-supported type SOFCs based on novel low temperature ceramic coating process. J Korean Ceram Soc 52(5):338–343.  https://doi.org/10.4191/kcers.2015.52.5.338 CrossRefGoogle Scholar
  36. 36.
    Exner J, Fuierer P, Moos R (2014) Aerosol deposition of (Cu, Ti) substituted bismuth vanadate films. Thin Solid Films 573:185–190.  https://doi.org/10.1016/j.tsf.2014.11.037 CrossRefGoogle Scholar
  37. 37.
    Bae H, Choi J, Choi GM (2013) Electrical conductivity of Gd-doped ceria film fabricated by aerosol deposition method. Solid State Ionics 236:16–21.  https://doi.org/10.1016/j.ssi.2013.01.022 CrossRefGoogle Scholar
  38. 38.
    Exner J, Pöpke H, Fuchs F-M, Kita J, Moos R (2018) Annealing of gadolinium-doped ceria (GDC) films produced by the aerosol deposition method. Materials 11(11):2072.  https://doi.org/10.3390/ma11112072 CrossRefGoogle Scholar
  39. 39.
    Bektas M, Hanft D, Schönauer-Kamin D, Stöcker T, Hagen G, Moos R (2014) Aerosol-deposited BaFe0.7Ta0.3O3−δ for nitrogen monoxide and temperature-independent oxygen sensing. J Sens Sens Syst 3(2):223–229.  https://doi.org/10.5194/jsss-3-223-2014 CrossRefGoogle Scholar
  40. 40.
    Sahner K, Kaspar M, Moos R (2009) Assessment of the novel aerosol deposition method for room temperature preparation of metal oxide gas sensor films. Sens Actuators B 139(2):394–399.  https://doi.org/10.1016/j.snb.2009.03.011 CrossRefGoogle Scholar
  41. 41.
    Exner J, Schubert M, Hanft D, Stöcker T, Fuierer P, Moos R (2016) Tuning of the electrical conductivity of Sr(Ti, Fe)O3 oxygen sensing films by aerosol co-deposition with Al2O3. Sens Actuators B 230:427–433.  https://doi.org/10.1016/j.snb.2016.02.033 CrossRefGoogle Scholar
  42. 42.
    Wang Y-Y, Liu Y, Yang G-J, Feng J-J, Kusumoto K (2010) Effect of microstructure on the electrical properties of nano-structured TiN coatings deposited by vacuum cold spray. J Therm Spray Technol 19(6):1231–1237.  https://doi.org/10.1007/s11666-010-9541-9 CrossRefGoogle Scholar
  43. 43.
    Choi J-J, Ryu J, Hahn B-D, Yoon W-H, Lee B-K, Park D-S (2009) Dense spinel MnCo2O4 film coating by aerosol deposition on ferritic steel alloy for protection of chromic evaporation and low-conductivity scale formation. J Mater Sci 44(3):843–848.  https://doi.org/10.1007/s10853-008-3132-x CrossRefGoogle Scholar
  44. 44.
    Schubert M, Münch C, Schuurman S, Poulain V, Kita J, Moos R (2018) Characterization of nickel manganite NTC thermistor films prepared by aerosol deposition at room temperature. J Eur Ceram Soc 38(2):613–619.  https://doi.org/10.1016/j.jeurceramsoc.2017.09.005 CrossRefGoogle Scholar
  45. 45.
    Ryu J, Park D-S, Schmidt R (2011) In-plane impedance spectroscopy in aerosol deposited NiMn2O4 negative temperature coefficient thermistor films. J Appl Phys 109(11):113722.  https://doi.org/10.1063/1.3592300 CrossRefGoogle Scholar
  46. 46.
    Johnson SD, Gonzalez CM, Anderson V, Robinson Z, Newman HS, Shin S, Qadri SB (2017) Magnetic and structural properties of sintered bulk pucks and aerosol deposited films of Ti-doped barium hexaferrite for microwave absorption applications. J Appl Phys 122(2):24901.  https://doi.org/10.1063/1.4991808 CrossRefGoogle Scholar
  47. 47.
    Dayaghi AM, Kim KJ, Kim SJ, Kim S, Bae H, Choi GM (2017) Thermal cycling and electrochemical characteristics of solid oxide fuel cell supported on stainless steel with a new 3-phase composite anode. J Power Sources 354:74–84.  https://doi.org/10.1016/j.jpowsour.2017.04.022 CrossRefGoogle Scholar
  48. 48.
    Choi J-J, Oh S-H, Noh H-S, Kim H-R, Son J-W, Park D-S, Choi J-H, Ryu J, Hahn B-D, Yoon W-H, Lee H-W (2011) Low temperature fabrication of nano-structured porous LSM–YSZ composite cathode film by aerosol deposition. J Alloys Compd 509(5):2627–2630.  https://doi.org/10.1016/j.jallcom.2010.11.169 CrossRefGoogle Scholar
  49. 49.
    Akedo J, Lebedev M (2002) Powder preparation in aerosol deposition method for lead zirconate titanate thick films. Jpn J Appl Phys 41(Part 1, No. 11B):6980–6984.  https://doi.org/10.1143/JJAP.41.6980 CrossRefGoogle Scholar
  50. 50.
    Exner J, Hahn M, Schubert M, Hanft D, Fuierer P, Moos R (2015) Powder requirements for aerosol deposition of alumina films. Adv Powder Technol 26:1143–1151.  https://doi.org/10.1016/j.apt.2015.05.016 CrossRefGoogle Scholar
  51. 51.
    Schubert M, Leupold N, Exner J, Kita J, Moos R (2018) High-temperature electrical insulation behavior of alumina films prepared at room temperature by aerosol deposition and influence of the annealing process and powder impurities. J Therm Spray Technol 27(5):870–879.  https://doi.org/10.1007/s11666-018-0719-x CrossRefGoogle Scholar
  52. 52.
    Ahamer C, Opitz AK, Rupp GM, Fleig J (2017) Revisiting the temperature dependent ionic conductivity of yttria stabilized zirconia (YSZ). J Electrochem Soc 164(7):F790–F803.  https://doi.org/10.1149/2.0641707jes CrossRefGoogle Scholar
  53. 53.
    Exner J, Moos R (2015) Ermittlung spezifischer Materialkennwerte von Schichten mittels Interdigital-Elektroden. 12. Dresdner Sensor-Symposium, Dresden, Germany.  https://doi.org/10.5162/12dss2015/p7.10
  54. 54.
    Park J-J, Kim D-Y, Lee J-G, Kim D, Oh J-H, Seong T-Y, van Hest MFAM, Yoon SS (2013) Superhydrophilic transparent titania films by supersonic aerosol deposition. J Am Ceram Soc 96(5):1596–1601.  https://doi.org/10.1111/jace.12164 CrossRefGoogle Scholar
  55. 55.
    Nakada M, Tsuda H, Ohashi K, Akedo J (2007) Aerosol deposition on transparent electro-optic films for optical modulators. IEICE Trans Electron 90(1):36–40.  https://doi.org/10.1093/ietele/e90-c.1.36 CrossRefGoogle Scholar
  56. 56.
    Akedo J (2006) Aerosol deposition of ceramic thick films at room temperature: densification mechanism of ceramic layers. J Am Ceram Soc 89(6):1834–1839.  https://doi.org/10.1111/j.1551-2916.2006.01030.x CrossRefGoogle Scholar
  57. 57.
    Khan A, Ahn C-W, Ryu J, Yoon W-H, Hahn B-D, Choi J-J, Kim J-W, Park D-S (2014) Effect of annealing on properties of lithium aluminum germanium phosphate electrolyte thick films prepared by aerosol deposition. Met Mater Int 20(2):399–404.  https://doi.org/10.1007/s12540-014-1018-9 CrossRefGoogle Scholar
  58. 58.
    Kochowski S, Nitsch K (2002) Description of the frequency behaviour of metal–SiO2–GaAs structure characteristics by electrical equivalent circuit with constant phase element. Thin Solid Films 415(1–2):133–137.  https://doi.org/10.1016/S0040-6090(02)00506-0 CrossRefGoogle Scholar
  59. 59.
    Jović VD, Jović BM (2003) EIS and differential capacitance measurements onto single crystal faces in different solutions: part I: Ag(111) in 0.01 M NaCl. J Electroanal Chem 541:1–11.  https://doi.org/10.1016/S0022-0728(02)01309-8 CrossRefGoogle Scholar
  60. 60.
    Boukamp BA (2008) Electrochemical impedance spectroscopy. electrocatalysis@nanoscale: techniques and applications. University Leiden, Leiden. www.lorentzcenter.nl/lc/web/2008/317/presentations/Boukamp.pdf
  61. 61.
    Shu JH, Wikle HC, Chin BA (2010) Passive chemiresistor sensor based on iron (II) phthalocyanine thin films for monitoring of nitrogen dioxide. Sens Actuators B 148(2):498–503.  https://doi.org/10.1016/j.snb.2010.05.017 CrossRefGoogle Scholar
  62. 62.
    Hagen G, Kita J, Izu N, Röder-Roith U, Schönauer-Kamin D, Moos R (2013) Planar platform for temperature dependent four-wire impedance spectroscopy—a novel tool to characterize functional materials. Sens Actuators B 187:174–183.  https://doi.org/10.1016/j.snb.2012.10.068 CrossRefGoogle Scholar
  63. 63.
    Bailly N, Georges S, Djurado E (2012) Elaboration and electrical characterization of electrosprayed YSZ thin films for intermediate temperature-solid oxide fuel cells (IT-SOFC). Solid State Ionics 222–223:1–7.  https://doi.org/10.1016/j.ssi.2012.06.020 CrossRefGoogle Scholar
  64. 64.
    Nakamura A, Wagner JB (1986) Defect structure, ionic conductivity, and diffusion in yttria stabilized zirconia and related oxide electrolytes with fluorite structure. J Electrochem Soc 133(8):1542.  https://doi.org/10.1149/1.2108965 CrossRefGoogle Scholar
  65. 65.
    Weller M, Herzog R, Kilo M, Borchardt G, Weber S, Scherrer S (2004) Oxygen mobility in yttria-doped zirconia studied by internal friction, electrical conductivity and tracer diffusion experiments. Solid State Ionics 175(1–4):409–413.  https://doi.org/10.1016/j.ssi.2003.12.044 CrossRefGoogle Scholar
  66. 66.
    Gerstl M, Navickas E, Friedbacher G, Kubel F, Ahrens M, Fleig J (2011) The separation of grain and grain boundary impedance in thin yttria stabilized zirconia (YSZ) layers. Solid State Ionics 185(1):32–41.  https://doi.org/10.1016/j.ssi.2011.01.008 CrossRefGoogle Scholar
  67. 67.
    Fleig J, Maier J (1999) The impedance of ceramics with highly resistive grain boundaries: validity and limits of the brick layer model. J Eur Ceram Soc 19(6–7):693–696.  https://doi.org/10.1016/S0955-2219(98)00298-2 CrossRefGoogle Scholar
  68. 68.
    Guo X, Maier J (2001) Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc 148(3):E121–E126.  https://doi.org/10.1149/1.1348267 CrossRefGoogle Scholar
  69. 69.
    Tuller H (2000) Ionic conduction in nanocrystalline materials. Solid State Ionics 131(1–2):143–157.  https://doi.org/10.1016/S0167-2738(00)00629-9 CrossRefGoogle Scholar
  70. 70.
    Lee D-W, Kim H-J, Kim Y-H, Yun Y-H, Nam S-M (2011) Growth Process of α-Al2O3 ceramic films on metal substrates fabricated at room temperature by aerosol deposition. J Am Ceram Soc 94(9):3131–3138.  https://doi.org/10.1111/j.1551-2916.2011.04493.x CrossRefGoogle Scholar
  71. 71.
    Teraoka K, Hirose S, Murakami S, Kato K, Akedo J (2010) Aerosol deposition of α-TCP on a Ti surface. J Ceram Soc Jpn 118(1378):502–507.  https://doi.org/10.2109/jcersj2.118.502 CrossRefGoogle Scholar
  72. 72.
    Wang L-S, Zhou H-F, Zhang K-J, Wang Y-Y, Li C-X, Luo X-T, Yang G-J, Li C-J (2016) Effect of the powder particle structure and substrate hardness during vacuum cold spraying of Al2O3. Ceram Int 43(5):4390–4398.  https://doi.org/10.1016/j.ceramint.2016.12.085 CrossRefGoogle Scholar
  73. 73.
    Ryu J, Kim K-Y, Choi J-J, Hahn B-D, Yoon W-H, Lee B-K, Park D-S, Park C (2009) Highly dense and nanograined NiMn2O4 negative temperature coefficient thermistor thick films fabricated by aerosol-deposition. J Am Ceram Soc 92(12):3084–3087.  https://doi.org/10.1111/j.1551-2916.2009.03300.x CrossRefGoogle Scholar
  74. 74.
    Shen W, Jiang J, Hertz JL (2014) Reduced ionic conductivity in biaxially compressed ceria. RSC Adv 4(41):21625–21630.  https://doi.org/10.1039/C4RA00820K CrossRefGoogle Scholar
  75. 75.
    Fischer S, Pohle R, Magori E, Fleischer M, Moos R (2014) Detection of NO by pulsed polarization of Pt I YSZ. Solid State Ionics 262:288–291.  https://doi.org/10.1016/j.ssi.2014.01.022 CrossRefGoogle Scholar
  76. 76.
    Exner J, Albrecht G, Schönauer-Kamin D, Kita J, Moos R (2017) Pulsed polarization-based NOx sensors of YSZ films produced by the aerosol deposition method and by screen-printing. Sensors 17(8):1715.  https://doi.org/10.3390/s17081715 CrossRefGoogle Scholar
  77. 77.
    Akedo J, Ryu J, Jeong D-Y, Johnson SD (2017) Advanced piezoelectric materials. Elsevier, London, pp 575–614CrossRefGoogle Scholar
  78. 78.
    Akedo J, Park J-H, Kawakami Y (2018) Piezoelectric thick film fabricated with aerosol deposition and its application to piezoelectric devices. Jpn J Appl Phys 57(07LA02):2.  https://doi.org/10.7567/JJAP.57.07LA02 CrossRefGoogle Scholar
  79. 79.
    Palneedi H, Maurya D, Kim G-Y, Annapureddy V, Noh M-S, Kang C-Y, Kim J-W, Choi J-J, Choi S-Y, Chung S-Y, Kang S-JL, Priya S, Ryu J (2017) Unleashing the full potential of magnetoelectric coupling in film heterostructures. Adv Mater 29(10):1605688.  https://doi.org/10.1002/adma.201605688 CrossRefGoogle Scholar
  80. 80.
    Palneedi H, Choi I, Kim G-Y, Annapureddy V, Maurya D, Priya S, Kim J-W, Lee KJ, Choi S-Y, Chung S-Y, Kang S-JL, Ryu J, Vieland D (2016) Tailoring the magnetoelectric properties of Pb(Zr, Ti)O3 film deposited on amorphous metglas foil by laser annealing. J Am Ceram Soc 99:2680–2687.  https://doi.org/10.1111/jace.14270 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Functional MaterialsUniversity of BayreuthBayreuthGermany

Personalised recommendations