Journal of Materials Science

, Volume 54, Issue 21, pp 13685–13693 | Cite as

MoO3 nanobelts for high-performance asymmetric supercapacitor

  • Lichuan Wang
  • Lin Gao
  • Jin Wang
  • Yan ShenEmail author
Energy materials


This study reports on MoO3 nanobelts as electrode material for high-performance supercapacitors. We find MoO3 nanobelts electrode exhibits a higher specific capacitance than MoO3 microrods electrode. Thus, an asymmetric supercapacitor utilizing the as-prepared MoO3 nanobelts as the positive electrode material and the carbon nanosheets as the negative electrode material achieves an impressive performance with an energy density of 25.69 Wh kg−1 at a power density of 1482.25 W kg−1. We further reveal that the exposed (010) facets in the crystalline MoO3 nanobelts might mainly contribute to its electrochemical performance.



This work was financially supported by the Fundamental Research Funds for the Central Universities (HUST: 2016YXMS031) and the Director Fund of the WNLO. We thank the facility support of the Analytical and Testing Centre at Huazhong University of Science and Technology and the Center for Nanoscale Characterization and Devices of WNLO.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10853_2019_3836_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2653 kb)


  1. 1.
    Miller J, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652CrossRefGoogle Scholar
  2. 2.
    Conway B (1991) Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc 138:1539–1548CrossRefGoogle Scholar
  3. 3.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  4. 4.
    Mai L, Yang F, Zhao Y et al (2011) Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:381CrossRefGoogle Scholar
  5. 5.
    Li S, Huang D, Yang J et al (2014) Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9:309–317CrossRefGoogle Scholar
  6. 6.
    Li S, Huang D, Zhang B et al (2014) Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv Energy Mater 4:1301655CrossRefGoogle Scholar
  7. 7.
    Lin T, Chen W, Liu F et al (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350:1508–1513CrossRefGoogle Scholar
  8. 8.
    Wei W, Cui X, Chen W et al (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721CrossRefGoogle Scholar
  9. 9.
    Yin B, Zhang S, Ren Q et al (2017) Elastic soft hydrogel supercapacitor for energy storage. J Mater Chem A 5:24942–24950CrossRefGoogle Scholar
  10. 10.
    Zhang S, Yin B, Liu C et al (2018) A lightweight, compressible and portable sponge-based supercapacitor or future power supply. Chem Eng J 349:509–521CrossRefGoogle Scholar
  11. 11.
    Snook G, Kao P, Best A (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12CrossRefGoogle Scholar
  12. 12.
    Zhang S, Yin B, Liu X et al (2019) A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches. Nano Energy 59:41–49CrossRefGoogle Scholar
  13. 13.
    Xu C, Li Z, Yang C et al (2016) An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors. Adv Mater 28:4105–4110CrossRefGoogle Scholar
  14. 14.
    Hall P, Mirzaeian M, Fletcher S et al (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3:1238–1251CrossRefGoogle Scholar
  15. 15.
    Yu Z, Tetard L, Zhai L et al (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Environ Sci 8:702–730Google Scholar
  16. 16.
    Shao Y, El-Kady M, Sun J et al (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118:9233–9280CrossRefGoogle Scholar
  17. 17.
    Xiao X, Peng Z, Chen C et al (2014) Freestanding MoO3-x nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy 9:355–363CrossRefGoogle Scholar
  18. 18.
    Du P, Wei W, Liu D et al (2018) Fabrication of hierarchical MoO3-PPy core-shell nanobelts and “worm-like” MWNTs-MnO2 core-shell materials for high-performance asymmetric supercapacitor. J Mater Sci 53:5255–5269. CrossRefGoogle Scholar
  19. 19.
    Liu T, Pell W, Conway B (1997) Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim Acta 42:3541–3552CrossRefGoogle Scholar
  20. 20.
    Zhao X, Sánchez B, Dobson P et al (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3:839–855CrossRefGoogle Scholar
  21. 21.
    Liang Y, Li H, Zhang X et al (2007) Solid state synthesis of hydrous ruthenium oxide for supercapacitors. J Power Sources 173:599–605CrossRefGoogle Scholar
  22. 22.
    Tao T, Chen Q, Hu H et al (2012) MoO3 nanoparticles distributed uniformly in carbon matrix for supercapacitor applications. Mater Lett 66:102–105CrossRefGoogle Scholar
  23. 23.
    Sánchez B, Brousse T, Castro C et al (2013) An investigation of nanostructured thin film α-MoO3 based supercapacitor electrodes in an aqueous electrolyte. Electrochim Acta 91:253–260CrossRefGoogle Scholar
  24. 24.
    Smith R, Rohrer G (1996) Scanning probe microscopy of cleaved molybdates: α-MoO3(010), Mo18O52(100), Mo8O23(010), and h-Mo4O11(100). J Solid State Chem 124:104–115CrossRefGoogle Scholar
  25. 25.
    Shakir I, Sarfraz M (2014) Evaluation of electrochemical charge storage mechanism and structural changes in intertwined MoO3-MWCNTs composites for supercapacitor applications. Electrochim Acta 147:380–384CrossRefGoogle Scholar
  26. 26.
    Li J, Liu X (2013) Preparation and characterization of α-MoO3 nanobelt and its application in supercapacitor. Mater Lett 112:39–42CrossRefGoogle Scholar
  27. 27.
    Hanlon D, Backes C, Higgins T et al (2014) Production of molybdenum trioxide nanosheets by liquid exfoliation and their application in high-performance supercapacitors. Chem Mater 26:1751–1763CrossRefGoogle Scholar
  28. 28.
    Qu Q, Li L, Tian S et al (2010) A cheap asymmetric supercapacitor with high energy at high power: activated carbon//K0.27MnO2·0.6H2O. J Power Sources 195:2789–2794CrossRefGoogle Scholar
  29. 29.
    Gao H, Xiao F, Ching C et al (2012) High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl Mater Interfaces 4:2801–2810CrossRefGoogle Scholar
  30. 30.
    Wang T, Chen H, Yu F et al (2019) Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater 16:545–573CrossRefGoogle Scholar
  31. 31.
    Lunk H, Hartl H, Hartl M et al (2010) “Hexagonal molybdenum trioxide”- known for 100 years and still a fount of new discoveries. Inorg Chem 49:9400–9408CrossRefGoogle Scholar
  32. 32.
    Shakir I, Shahid M, Rana U et al (2014) In situ hydrogenation of molybdenum oxide nanowires for enhanced supercapacitors. RSC Adv 4:8741–8745CrossRefGoogle Scholar
  33. 33.
    Tang W, Liu L, Tian S et al (2011) Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. Chem Commun 47:10058–10060CrossRefGoogle Scholar
  34. 34.
    Ahmed B, Shahid M, Nagaraju D et al (2015) Surface passivation of MoO3 nanorods by atomic layer deposition toward high rate durable Li ion battery anodes. ACS Appl Mater Interfaces 7:13154–13163CrossRefGoogle Scholar
  35. 35.
    Wang Z, Madhavi S, Lou X et al (2012) Ultralong α-MoO3 nanobelts: synthesis and effect of binder choice on their lithium storage properties. J Phys Chem C 116:12508–12513CrossRefGoogle Scholar
  36. 36.
    Ji H, Liu X, Liu Z et al (2015) In situ preparation of sandwich MoO3/C hybrid nanostructures for high-rate and ultralong-life supercapacitors. Adv Funct Mater 25:1886–1894CrossRefGoogle Scholar
  37. 37.
    Gao L, Li S, Huang D et al (2015) ZnO decorated TiO2 nanosheet composites for lithium ion battery. Electrochim Acta 182:529–536CrossRefGoogle Scholar
  38. 38.
    Gao L, Huang D, Shen Y et al (2015) Rutile-TiO2 decorated Li4Ti5O12 nanosheet arrays with 3D interconnected architecture as anodes for high performance hybrid supercapacitors. J Mater Chem A 3:23570–23576CrossRefGoogle Scholar
  39. 39.
    Gao L, Li S, Huang D et al (2015) Porous Li4Ti5O12–TiO2 nanosheet arrays for high performance lithium-ion batteries. J Mater Chem A 3:10107–10113CrossRefGoogle Scholar
  40. 40.
    Zhou C, Zhang Y, Li Y et al (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078–2085CrossRefGoogle Scholar
  41. 41.
    Gao L, Hu H, Li G et al (2014) Hierarchical 3D TiO2@Fe2O3 nanoframework arrays as high-performance anode materials. Nanoscale 6:6463–6467CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and TechnologyWuhanPeople’s Republic of China
  3. 3.College of Materials and Chemical EngineeringChina Three Gorges UniversityYichangPeople’s Republic of China
  4. 4.Fuzhou BOE Optoelectronics Technology Co., LtdFuqingPeople’s Republic of China

Personalised recommendations