Advertisement

Journal of Materials Science

, Volume 54, Issue 21, pp 13674–13684 | Cite as

Ordered mesoporous carbon sphere-based solid-contact ion-selective electrodes

  • Zidengya Jiang
  • Xin Xi
  • Shi Qiu
  • Dongqing Wu
  • Wei Tang
  • Xiaojun Guo
  • Yuezeng SuEmail author
  • Ruili LiuEmail author
Energy materials
  • 46 Downloads

Abstract

All-solid-state potassium ion-selective electrodes (K+ ISEs) using ordered mesoporous carbon (OMC) sphere as the solid contact (SC) are fabricated in this work, which exhibit excellent K+-sensing capability including the stable Nernstian response in a wide linear range of 10−4.19–10−0.21 M, a low detection limit of 5.4 μM, short response time, and good stability. The excellent performances of the K+ ISEs are attributable to the OMC spheres with interconnected mesopore structure, uniform spherical morphology, high surface area, high conductivity, and high capacitance, which provide the highly efficient ion-to-electron transduction between the ion-selective membrane and conductive component in the electrodes. More importantly, the OMC sphere-based SC layer can be deposited in the flexible ISEs by solution processing, which thus enables the construction of ion-sensitive field-effect transistor-based handheld K+-sensing system with high sensitivity and reproducibility, demonstrating the potentials of the OMC spheres in practical ion detection devices.

Notes

Acknowledgements

This work was financially supported by Shanghai Committee of Science and Technology (16JC1400703) and National Natural Science Foundation of China (61575121, 51772189, 21772120, and 21572132). We also thank the Instrumental Analysis Center of Shanghai Jiao Tong University, Advanced Electronics Materials and Devices (AEMD) of Shanghai Jiao Tong University for the characterization of materials.

Compliance with ethical standards

Conflicts of interest

The authors declare no competing financial interest.

Supplementary material

10853_2019_3752_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2090 kb)

References

  1. 1.
    Liao C, Zhang M, Yao MY, Hua T, Li L, Yan F (2015) Flexible organic electronics in biology: materials and devices. Adv Mater 27:7493–7527CrossRefGoogle Scholar
  2. 2.
    Han ST, Peng H, Sun Q, Venkatesh S, Chung KS, Lau SC, Zhou Y, Roy VAL (2017) An overview of the development of flexible sensors. Adv Mater 29:1700375CrossRefGoogle Scholar
  3. 3.
    Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y (2018) Advanced carbon for flexible and wearable electronics. Adv Mater 30:1801072Google Scholar
  4. 4.
    Cuartero M, Parrilla M, Crespo AG (2019) Wearable potentiometric sensors for medical applications. Sensors 19:363CrossRefGoogle Scholar
  5. 5.
    Braiek M, Djebbi MA, Chateaux JF, Jaffrezic Renault N (2016) A conductometric sensor for potassium detection in whole blood. Sens Actuators B Chem 235:27–32CrossRefGoogle Scholar
  6. 6.
    Bobacka J, Ivaska A, Lewenstam A (2008) Potentiometric ion sensors. Chem Rev 108:329–351CrossRefGoogle Scholar
  7. 7.
    Cattrall RW, Freiser Henry (1971) Coated wire ion-selective electrodes. Anal Chem 43:1905–1906CrossRefGoogle Scholar
  8. 8.
    Lindner E, Gyurcsányi RE (2008) Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. J Solid State Electrochem 13:51–68CrossRefGoogle Scholar
  9. 9.
    Bobacka J, Lewenstam Andrzej, Ivaska Ari (2001) Equilibrium potential of potentiometric ion sensors under steady-state current by using current-reversal chronopotentiometry. J Electroanal Chem 509:27–30CrossRefGoogle Scholar
  10. 10.
    Jaworska E, Michalska A, Maksymiuk K (2017) Polypyrrole nanospheres—electrochemical properties and application as a solid contact in ion-selective electrodes. Electroanal 29:123–130CrossRefGoogle Scholar
  11. 11.
    Lindfors T, Aarnio Harri, Ivaska Ari (2007) Potassium-selective electrodes with stable and geometrically well-defined internal solid contact based on nanoparticles of polyaniline and plasticized poly(vinyl chloride). Anal Chem 79:8571–8577CrossRefGoogle Scholar
  12. 12.
    Szűcs J, Lindfors T, Bobacka J, Gyurcsányi RE (2016) Ion-selective electrodes with 3D nanostructured conducting polymer solid contact. Electroanal 28:778–786CrossRefGoogle Scholar
  13. 13.
    Csahok E, Vieil E, Inzelt G (2000) In situ dc conductivity study of the redox transformations and relaxation of polyaniline films. J Electroanal Chem 482:168–177CrossRefGoogle Scholar
  14. 14.
    Abad J, Espinosa N, Ferrer P, García Valverde R, Miguel C, Padilla J, Alcolea J, Castro GR, Colchero J, Urbina A (2012) Molecular structure of poly(3-alkyl-thiophenes) investigated by calorimetry and grazing incidence X-ray scattering. Sol Energy Mater Sol Cells 97:109–118CrossRefGoogle Scholar
  15. 15.
    Sun Q, Li W, Su B (2015) Highly hydrophobic solid contact based on graphene-hybrid nanocomposites for all solid state potentiometric sensors with well-formulated phase boundary potentials. J Electroanal Chem 740:21–27CrossRefGoogle Scholar
  16. 16.
    Liu X, Ye C, Li X, Cui N, Wu T, Du S, Wei Q, Fu L, Yin J, Lin CT (2018) Highly sensitive and selective potassium ion detection based on graphene hall effect biosensors. Materials 11:399–407CrossRefGoogle Scholar
  17. 17.
    Crespo GA, Macho S, Rius FX (2008) Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal Chem 80:1316–1322CrossRefGoogle Scholar
  18. 18.
    Roy S, David-Pur M, Hanein Y (2017) Carbon nanotube-based ion selective sensors for wearable applications. ACS Appl Mater Interfaces 9:35169–35177CrossRefGoogle Scholar
  19. 19.
    Li J, Yin T, Qin W (2015) An all-solid-state polymeric membrane Pb2+-selective electrode with bimodal pore C60 as solid contact. Anal Chim Acta 876:49–54CrossRefGoogle Scholar
  20. 20.
    Lai CZ, Fierke MA, Stein A, Bühlmann P (2007) Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact. Anal Chem 79:4621–4626CrossRefGoogle Scholar
  21. 21.
    Hu J, Zou XU, Stein A, Buhlmann P (2014) Ion-selective electrodes with colloid-imprinted mesoporous carbon as solid contact. Anal Chem 86:7111–7118CrossRefGoogle Scholar
  22. 22.
    Nishihara H, Kyotani T (2012) Templated nanocarbons for energy storage. Adv Mater 24:4473–4498CrossRefGoogle Scholar
  23. 23.
    Liu L, Zhang H, Wang G, Du J, Zhang Y, Fu X, Chen A (2017) Synthesis of mesoporous carbon nanospheres via “pyrolysis-deposition” strategy for CO2 capture. J Mater Sci 52:9640–9647.  https://doi.org/10.1007/s10853-017-1093-7 CrossRefGoogle Scholar
  24. 24.
    Fang Y, Gu D, Zou Y, Wu Z, Li F, Che R, Deng Y, Tu B, Zhao D (2010) A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem Int Ed Engl 122:8159–8163CrossRefGoogle Scholar
  25. 25.
    Qiu S, Tang W, Xi X, Sun W, Huang Y, Liu R, Su Y, Jiang L, Wei Q, Yu Y, Guo X (2018) All-additive solution processed silver/silver chloride reference electrode for handheld ion-sensitive field-effect transistor sensing system. IEEE Sens Lett 2:1–4CrossRefGoogle Scholar
  26. 26.
    Meier PC (1982) Two-parameter debye-hückel approximation for the evaluation of mean activity coefficients of 109 electrolytes. Anal Chim Acta 136:64–73CrossRefGoogle Scholar
  27. 27.
    Ping J, Wang Y, Wu J, Ying Y (2011) Development of an all-solid-state potassium ion-selective electrode using graphene as the solid-contact transducer. Electrochem Commun 13:1529–1532CrossRefGoogle Scholar
  28. 28.
    Fang Y, Lv Y, Che R, Wu H, Zhang X, Gu D, Zheng G, Zhao D (2013) Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J Am Chem Soc 135:1524–1530CrossRefGoogle Scholar
  29. 29.
    Wang X, Dai S (2009) A simple method to ordered mesoporous carbons containing nickel nanoparticles. Adsorption 15:138–144CrossRefGoogle Scholar
  30. 30.
    Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22:2392–2415CrossRefGoogle Scholar
  31. 31.
    Wang L, Zhao H, Zhang D, Song W, Xu S, Liu S, Li Z (2017) Ordered mesoporous carbon-supported CoFe2O4 composite with enhanced lithium storage properties. J Mater Sci 52:6265–6279.  https://doi.org/10.1007/s10853-017-0859-2 CrossRefGoogle Scholar
  32. 32.
    Liu R, Pan L, Jiang J, Xi X, Liu X, Wu D (2016) Nitrogen-doped carbon microfiber with wrinkled surface for high performance supercapacitors. Sci Rep 6:21750–21756CrossRefGoogle Scholar
  33. 33.
    Lv Y, Wu Z, Fang Y, Qian X, Asiri AM, Tu B, Zhao D (2014) Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries. APL Mater 2:113302CrossRefGoogle Scholar
  34. 34.
    Sing KS, Williams RT (2004) Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt Sci Technol 22:773–782CrossRefGoogle Scholar
  35. 35.
    Zhao DY, Wan Y, Zhou WZ (2013) Ordered mesoporous molecular sieve materials. Wiley, WeinheimCrossRefGoogle Scholar
  36. 36.
    Hu J, Stein A, Bühlmann P (2016) Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC. Trends Anal Chem 76:102–114CrossRefGoogle Scholar
  37. 37.
    Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures. Adv Mater 21:2664–2680CrossRefGoogle Scholar
  38. 38.
    Frackowiak E, Beguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40:1775–1787CrossRefGoogle Scholar
  39. 39.
    Fierke MA, Lai CZ, Bühlmann P, Stein A (2010) Effects of architecture and surface chemistry of three-dimensionally ordered macroporous carbon solid contacts on performance of ion-selective electrodes. Anal Chem 82:680–688CrossRefGoogle Scholar
  40. 40.
    Jia H, Sun J, Xie X, Yin K, Sun L (2019) Cicada slough-derived heteroatom incorporated porous carbon for supercapacitor: ultra-high gravimetric capacitance. Carbon 143:309–317CrossRefGoogle Scholar
  41. 41.
    Yu M, Xie B, Yang Y, Zhang Y, Chen Y, Yu W, Zhang S, Lu L, Liu D (2017) Residual oxygen groups in nitrogen-doped graphene to enhance the capacitive performance. RSC Adv 7:15293–15301CrossRefGoogle Scholar
  42. 42.
    Li Q, Jiang R, Dou Y, Wu Z, Huang T, Feng D, Yang J, Yu A, Zhao D (2011) Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon 49:1248–1257CrossRefGoogle Scholar
  43. 43.
    Subban RHY, Arof AK (2004) Plasticiser interactions with polymer and salt in PVC–LiCF3SO3–DMF electrolytes. Eur Polym J 40:1841–1847CrossRefGoogle Scholar
  44. 44.
    Nagatoishi S, Nojima T, Juskowiak B, Takenaka S (2005) A pyrene-labeled G-quadruplex oligonucleotide as a fluorescent probe for potassium ion detection in biological applications. Angew Chem Int Ed 44:5067–5070CrossRefGoogle Scholar
  45. 45.
    Nogueira T, Lago CLD (2011) Determination of Ca, K, Mg, Na, sulfate, phosphate, formate, acetate, propionate, and glycerol in biodiesel by capillary electrophoresis with capacitively coupled contactless conductivity detection. Microchem J 99:267–272CrossRefGoogle Scholar
  46. 46.
    Xu J, Jia F, Li F, An Q, Gan S, Zhang Q, Ivaska A, Niu L (2016) Simple and efficient synthesis of gold nanoclusters and their performance as solid contact of ion selective electrode. Electrochim Acta 222:1007–1012CrossRefGoogle Scholar
  47. 47.
    Yin T, Pan D, Qin W (2014) All-solid-state polymeric membrane ion-selective miniaturized electrodes based on a nanoporous gold film as solid contact. Anal Chem 86:11038–11044CrossRefGoogle Scholar
  48. 48.
    Nikolskii BP, Materova EA (1985) Solid contact in membrane ion-selective electrodes. Ion-sel Electrode Rev 7:3–39CrossRefGoogle Scholar
  49. 49.
    Gao Q, Zhang J, Xie Z, Omisore O, Zhang J, Wang L, Li H (2018) Highly stretchable sensors for wearable biomedical applications. J Mater Sci 54:5187–5223.  https://doi.org/10.1007/s10853-018-3171-x CrossRefGoogle Scholar
  50. 50.
    Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D, Lien DH, Brooks GA, Davis RW, Javey A (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509–514CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronic EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.School of Aeronautics and AstronauticsShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  3. 3.School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations