Advertisement

Surfactant aggregates within deep eutectic solvent-assisted synthesis of hierarchical ZIF-8 with tunable porosity and enhanced catalytic activity

  • Lihua Hu
  • Zongcheng Yan
  • Jianwei Zhang
  • Xiong Peng
  • Xiaohong Mo
  • Aili Wang
  • Li ChenEmail author
Chemical routes to materials
  • 40 Downloads

Abstract

An efficient template-assisted method was put forward for synthesizing hierarchical ZIF-8 (HZIF-8) particles, which was implemented in green solvent deep eutectic solvent and using sodium dodecyl sulfate (SDS) as template. Moreover, the porosity of HZIF-8 can be readily tuned by varying water content and the amount of SDS in solutions, because the template SDS aggregates within DES can be easily adjusted. The formation process of HZIF-8 was investigated via dynamic light scattering measurement and dissipative particle dynamics simulation. In particular, an essential understanding of influence of ZIF-8 surface area, the amount of acid–base and porosity on catalytic activity was established. The catalytic activity of HZIF-8 in the cycloaddition between CO2 and small molecule epoxide was mainly affected by surface area and amount of acid–base, whereas for the cycloaddition between CO2 and bulky molecule epoxide, the catalytic activity of HZIF-8 was mainly affected by porosity and amount of acid–base. The excellent properties and enhanced catalytic activity of the HZIF-8 make it into a promising material in varieties of bulky molecule catalytic reactions that cannot be performed through the use of purely microporous ZIF-8.

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 21676095 and 21736003), Public welfare research Project of Guangdong Province (No. 2016A020221004), China Postdoctoral Science Foundation funded Project (2018M630947), Research Fund Program of Guangdong Provincial Key Lab of Green Chemical Product Technology (No. GC201820), and the Science and Technology Program of Guangzhou, China (No. 201804020014). The authors would also gratefully acknowledge the support from the Guangdong Provincial Laboratory of Green Chemical Technology.

Supplementary material

10853_2019_3644_MOESM1_ESM.doc (6.7 mb)
Supplementary material 1 (DOC 6816 kb)

References

  1. 1.
    Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43:58–67CrossRefGoogle Scholar
  2. 2.
    Chen B, Yang Z, Zhu Y, Xia Y (2014) Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J Mater Chem A 2:16811–16831CrossRefGoogle Scholar
  3. 3.
    Aceituno Melgar VM, Kim J, Othman MR (2015) Zeolitic imidazolate framework membranes for gas separation: a review of synthesis methods and gas separation performance. J Ind Eng Chem 28:1–5CrossRefGoogle Scholar
  4. 4.
    Awadallah-F A, Hillman F, Al-Muhtaseb SA, Jeong H-K (2018) On the nanogate-opening pressures of copper-doped zeolitic imidazolate framework ZIF-8 for the adsorption of propane, propylene, isobutane, and n-butane. J Mater Sci 54:5513–5527.  https://doi.org/10.1007/s10853-018-03249-y CrossRefGoogle Scholar
  5. 5.
    Bhattacharjee S, Jang M-S, Kwon H-J, Ahn W-S (2014) Zeolitic imidazolate frameworks: synthesis, functionalization, and catalytic/adsorption applications. Catal Surv Asia 18:101–127CrossRefGoogle Scholar
  6. 6.
    Jia X, Wang S, Fan Y (2015) A novel strategy for producing highly dispersed Pd particles on ZIF-8 through the occupation and unoccupation of carboxyl groups and its application in selective diene hydrogenation. J Catal 327:54–57CrossRefGoogle Scholar
  7. 7.
    CS Wu, ZH Xiong, Li C, JM Zhang (2015) Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution. RSC Adv 5:82127–82137CrossRefGoogle Scholar
  8. 8.
    Banerjee R, Phan A, Wang B et al (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–943CrossRefGoogle Scholar
  9. 9.
    Jung BK, Jun JW, Hasan Z, Jhung SH (2015) Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8. Chem Eng J 267:9–15CrossRefGoogle Scholar
  10. 10.
    Gao M, Misquitta AJ, Rimmer LH, Dove MT (2016) Molecular dynamics simulation study of various zeolitic imidazolate framework structures. Dalton Trans 45:4289–4302CrossRefGoogle Scholar
  11. 11.
    Park KS, Ni Z, Cote AP et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103:10186–10191CrossRefGoogle Scholar
  12. 12.
    Chizallet C, Lazare S, Bazer-Bachi D et al (2010) Catalysis of transesterification by a nonfunctionalized metal-organic framework: acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations. J Am Chem Soc 132:12365–12377CrossRefGoogle Scholar
  13. 13.
    Liu Q, Low Z-X, Li L et al (2013) ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. J Mater Chem A 1:11563–11569CrossRefGoogle Scholar
  14. 14.
    Li X, Hao C, Tang B et al (2017) Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites. Nanoscale 9:2178–2187CrossRefGoogle Scholar
  15. 15.
    Schejn A, Mazet T, Falk V et al (2015) Fe3O4@ZIF-8: magnetically recoverable catalysts by loading Fe3O4 nanoparticles inside a zinc imidazolate framework. Dalton Trans 44:10136–10140CrossRefGoogle Scholar
  16. 16.
    Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M, Yaghi OM (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877CrossRefGoogle Scholar
  17. 17.
    Liu C, Li T, Rosi NL (2012) Strain-promoted “click” modification of a mesoporous metal-organic framework. J Am Chem Soc 134:18886–18888CrossRefGoogle Scholar
  18. 18.
    Fang Z, Durholt JP, Kauer M et al (2014) Structural complexity in metal-organic frameworks: simultaneous modification of open metal sites and hierarchical porosity by systematic doping with defective linkers. J Am Chem Soc 136:9627–9636CrossRefGoogle Scholar
  19. 19.
    Cai G, Jiang H-L (2017) A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angewandte Chemie-International Edition 56:563–567CrossRefGoogle Scholar
  20. 20.
    Sun LB, Li JR, Park J, Zhou HC (2012) Cooperative template-directed assembly of mesoporous metal-organic frameworks. J Am Chem Soc 134:126–129CrossRefGoogle Scholar
  21. 21.
    Qiu LG, Xu T, Li ZQ et al (2008) Hierarchically micro- and mesoporous metal-organic frameworks with tunable porosity. Angew Chem 47:9487–9491CrossRefGoogle Scholar
  22. 22.
    Cao Y, Ma Y, Wang T, Wang X, Huo Q, Liu Y (2016) Facile fabricating hierarchically porous metal-organic frameworks via a template-free strategy. Cryst Growth Des 16:504–510CrossRefGoogle Scholar
  23. 23.
    Tanaka S, Nagaoka T, Yasuyoshi A, Hasegawa Y, Denayer JFM (2017) Hierarchical pore development of ZIF-8 MOF by simple salt-assisted mechanosynthesis. Cryst Growth Des 18:274–279CrossRefGoogle Scholar
  24. 24.
    Wu YN, Zhou M, Zhang B et al (2014) Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate framework-8 for efficient arsenate removal. Nanoscale 6:1105–1112CrossRefGoogle Scholar
  25. 25.
    Liu G, Xu Y, Han Y et al (2017) Immobilization of lysozyme proteins on a hierarchical zeolitic imidazolate framework (ZIF-8). Dalton Trans 46:2114–2121CrossRefGoogle Scholar
  26. 26.
    Wang S, Fan Y, Jia X (2014) Sodium dodecyl sulfate-assisted synthesis of hierarchically porous ZIF-8 particles for removing mercaptan from gasoline. Chem Eng J 256:14–22CrossRefGoogle Scholar
  27. 27.
    Duan C, Li F, Luo S, Xiao J, Li L, Xi H (2018) Facile synthesis of hierarchical porous metal-organic frameworks with enhanced catalytic activity. Chem Eng J 334:1477–1483CrossRefGoogle Scholar
  28. 28.
    Duan C, Li F, Zhang H, Li J, Wang X, Xi H (2017) Template synthesis of hierarchical porous metal–organic frameworks with tunable porosity. RSC Adv 7:52245–52251CrossRefGoogle Scholar
  29. 29.
    Duan C, Zhang H, Peng A et al (2018) Synthesis of hierarchically structured metal—organic frameworks by a dual-functional surfactant. Chemistryselect 3:5313–5320CrossRefGoogle Scholar
  30. 30.
    Shen K, Zhang L, Chen X et al (2018) Ordered macro-microporous metal-organic framework single crystals. Science 359:206–210CrossRefGoogle Scholar
  31. 31.
    Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082CrossRefGoogle Scholar
  32. 32.
    Alonso DA, Baeza A, Chinchilla R, Guillena G, Pastor IM, Ramón DJ (2016) Deep eutectic solvents: the organic reaction medium of the century. Eur J Org Chem 2016:612–632CrossRefGoogle Scholar
  33. 33.
    Zhang Q, De Oliveira Vigier K, Royer S, Jerome F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146CrossRefGoogle Scholar
  34. 34.
    Liu C, Sun F, Zhou S, Tian Y, Zhu G (2012) Facile synthesis of ZIF-8 nanocrystals in eutectic mixture. CrystEngComm 14:8365–8367CrossRefGoogle Scholar
  35. 35.
    Wang Y, Xu Y, Ma H et al (2014) Synthesis of ZIF-8 in a deep eutectic solvent using cooling-induced crystallisation. Microporous Mesoporous Mater 195:50–59CrossRefGoogle Scholar
  36. 36.
    Hu L, Chen L, Fang Y, Wang A, Chen C, Yan Z (2018) Facile synthesis of zeolitic imidazolate framework-8 (ZIF-8) by forming imidazole-based deep eutectic solvent. Microporous Mesoporous Mater 268:207–215CrossRefGoogle Scholar
  37. 37.
    Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 1:70–71CrossRefGoogle Scholar
  38. 38.
    Wang Y, Xu Y, Li D et al (2015) Ionothermal synthesis of zeolitic imidazolate frameworks and the synthesis dissolution-crystallization mechanism. Chin J Catal 36:855–865CrossRefGoogle Scholar
  39. 39.
    He M, Yao J, Liu Q, Wang K, Chen F, Wang H (2014) Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous Mesoporous Mater 184:55–60CrossRefGoogle Scholar
  40. 40.
    Yao J, Chen R, Wang K, Wang H (2013) Direct synthesis of zeolitic imidazolate framework-8/chitosan composites in chitosan hydrogels. Microporous Mesoporous Mater 165:200–204CrossRefGoogle Scholar
  41. 41.
    Bustamante EL, Fernandez JL, Zamaro JM (2014) Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. J Colloid Interface Sci 424:37–43CrossRefGoogle Scholar
  42. 42.
    Hu Y, Kazemian H, Rohani S, Huang Y, Song Y (2011) In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chem Commun (Camb) 47:12694–12696CrossRefGoogle Scholar
  43. 43.
    Duan C, Huo J, Li F, Yang M, Xi H (2018) Ultrafast room-temperature synthesis of hierarchically porous metal-organic frameworks by a versatile cooperative template strategy. J Mater Sci 53:16276–16287.  https://doi.org/10.1007/s10853-018-2793-3 CrossRefGoogle Scholar
  44. 44.
    Pal M, Rai R, Yadav A, Khanna R, Baker GA, Pandey S (2014) Self-aggregation of sodium dodecyl sulfate within (choline chloride + urea) deep eutectic solvent. Langmuir ACS J Surf Colloids 30:13191–13198CrossRefGoogle Scholar
  45. 45.
    Arnold T, Jackson AJ, Sanchez-Fernandez A, Magnone D, Terry AE, Edler KJ (2015) Surfactant behavior of sodium dodecylsulfate in deep eutectic solvent choline chloride/urea. Langmuir ACS J Surf Colloids 31:12894–13902CrossRefGoogle Scholar
  46. 46.
    Nune SK, Thallapally PK, Dohnalkova A, Wang C, Liu J, Exarhos GJ (2010) Synthesis and properties of nano zeolitic imidazolate frameworks. Chem Commun (Camb) 46:4878–4880CrossRefGoogle Scholar
  47. 47.
    Mao R, Lee MT, Vishnyakov A, Neimark AV (2015) Modeling aggregation of ionic surfactants using a smeared charge approximation in dissipative particle dynamics simulations. J Phys Chem B 119:11673–11683CrossRefGoogle Scholar
  48. 48.
    Shupanov R, Chertovich A, Kos P (2018) Micellar polymerization: computer simulations by dissipative particle dynamics. J Comput Chem 39:1275–1284CrossRefGoogle Scholar
  49. 49.
    Lee MT, Mao R, Vishnyakov A, Neimark AV (2016) Parametrization of chain molecules in dissipative particle dynamics. J Phys Chem B 120:4980–4991CrossRefGoogle Scholar
  50. 50.
    Deng X, Yang Y, Ma Y et al (2018) Self-assembled structure of sulfonic gemini surfactant solution. AIP Adv 8:075003.  https://doi.org/10.1063/1.5040684 CrossRefGoogle Scholar
  51. 51.
    Rekvig L, Kranenburg M, Vreede J, Hafskjold B, Smit B (2003) Investigation of surfactant efficiency using dissipative particle dynamics. Langmuir ACS J Surf Colloids 19:8195–8205CrossRefGoogle Scholar
  52. 52.
    Vishnyakov A, Lee MT, Neimark AV (2013) Prediction of the critical micelle concentration of nonionic surfactants by dissipative particle dynamics simulations. J Phys Chem Lett 4:797–802CrossRefGoogle Scholar
  53. 53.
    Spenley NA (2000) Scaling laws for polymers in dissipative particle dynamics. Europhys Lett 49:534–540CrossRefGoogle Scholar
  54. 54.
    Gavrilov AA, Chertovich AV, Khalatur PG, Khokhlov AR (2014) Study of the mechanisms of filler reinforcement in elastomer nanocomposites. Macromolecules 47:5400–5408CrossRefGoogle Scholar
  55. 55.
    Zhang H, Huo J, Li J, Li F, Duan C, Xi H (2018) Hierarchically porous metal–organic frameworks with single-crystal structures and their enhanced catalytic properties. CrystEngComm 20:5754–5759CrossRefGoogle Scholar
  56. 56.
    Xu B-H, Wang J-Q, Sun J et al (2015) Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach. Green Chem 17:108–122CrossRefGoogle Scholar
  57. 57.
    Wang X, Zhou Y, Guo Z et al (2015) Heterogeneous conversion of CO2 into cyclic carbonates at ambient pressure catalyzed by ionothermal-derived meso-macroporous hierarchical poly(ionic liquid)s. Chem Sci 6:6916–6924CrossRefGoogle Scholar
  58. 58.
    Comerford JW, Ingram IDV, North M, Wu X (2015) Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chem 17:1966–1987CrossRefGoogle Scholar
  59. 59.
    Jiang W, Yang J, Liu YY, Song SY, Ma JF (2016) A porphyrin-based porous rtl metal-organic framework as an efficient catalyst for the cycloaddition of CO2 to epoxides. Chemistry 22:16991–16997CrossRefGoogle Scholar
  60. 60.
    Verma S, Baig RBN, Nadagouda MN, Varma RS (2016) Titanium-based zeolitic imidazolate framework for chemical fixation of carbon dioxide. Green Chem 18:4855–4858CrossRefGoogle Scholar
  61. 61.
    Miralda CM, Macias EE, Zhu M, Ratnasamy P, Carreon MA (2012) Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate. ACS Catal 2:180–183CrossRefGoogle Scholar
  62. 62.
    Zhu M, Srinivas D, Bhogeswararao S, Ratnasamy P, Carreon MA (2013) Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and styrene oxide. Catal Commun 32:36–40CrossRefGoogle Scholar
  63. 63.
    Kuruppathparambil RR, Babu R, Jeong HM et al (2016) A solid solution zeolitic imidazolate framework as a room temperature efficient catalyst for the chemical fixation of CO2. Green Chem 18:6349–6356CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.School of Chemistry and Material ScienceLudong UniversityYantaiChina

Personalised recommendations