Advertisement

Photoelectrochemical CO2 reduction by Cu2O/Cu2S hybrid catalyst immobilized in TiO2 nanocavity arrays

  • Limin Guo
  • Jinqing Cao
  • Jiameng Zhang
  • Yanan Hao
  • Ke BiEmail author
Energy materials
  • 23 Downloads

Abstract

Photoelectrocatalytic CO2 reduction to CO was achieved on Cu2O/Cu2S nanoparticles which are immobilized in TiO2 nanocavity array. The Cu2S shell was obtained by ions exchange reaction of O2− and S2− on the surface of Cu2O by a chemical vapor deposition with Na2S precursor. This coating can protect the Cu2O nanoparticle from photocorrosion during photocatalysis. The lower resistance and plasmonic absorbance endow a superior activity of the Cu2O/Cu2S heterostructures toward photoelectrochemical reduction of CO2. It exhibits a current density of 10.7 mA cm−2 at the overpotential of − 0.26 V with a CO faradaic efficiency (FE) higher than 81%. The excellent photo-assisted catalytic performance (photo-induced current increment is more than 50%) is attributed to the localized surface plasmonic resonance of Cu2S coatings and highly ordered hierarchical structure of the Cu2O/Cu2S nanoparticles, which facilitate charge carrier separation and mass transfer. These hybrid electrodes demonstrate a long-term stability by resisting photocorrosion within 5 h with a higher FE of CO2 to CO conversion.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 61774020, 51672148, 51272123, 51802021).

Supplementary material

10853_2019_3615_MOESM1_ESM.docx (2.1 mb)
Characterization for morphology, composition and photoresponse of the samples are provided in Supporting Information (DOCX 2176 kb)

References

  1. 1.
    Song JT, Ryoo H, Cho M, Kim J, Kim J-G, Chung S-Y, Oh J (2017) Nanoporous Au thin films on Si photoelectrodes for selective and efficient photoelectrochemical CO2 reduction. Adv Energ Mater 7:1601103CrossRefGoogle Scholar
  2. 2.
    Kong Q, Kim D, Liu C, Yu Y, Su YD, Li YF, Yang PD (2016) Directed assembly of nanoparticle catalysts on nanowire photoelectrodes for photoelectrochemical CO2 reduction. Nano Lett 16:5675–5680CrossRefGoogle Scholar
  3. 3.
    Rosser TE, Windle CD, Reisner E (2016) Electrocatalytic and solar-driven CO2 reduction to CO with a molecular manganese catalyst immobilized on mesoporous TiO2. Angew Chem Int Edit 55:7388–7392CrossRefGoogle Scholar
  4. 4.
    Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Edit 52:7372–7408CrossRefGoogle Scholar
  5. 5.
    Chang X, Wang T, Gong J (2016) CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energ Environ Sci 9:2177–2196CrossRefGoogle Scholar
  6. 6.
    Long R, Li Y, Liu Y, Chen S, Zheng X, Gao C, He C, Chen N, Qi Z, Song L, Jiang J, Zhu J, Xiong Y (2017) Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO2 to CH4. J Am Chem Soc 139:4486–4492CrossRefGoogle Scholar
  7. 7.
    Neatu S, Antonio Macia-Agullo J, Concepcion P, Garcia H (2014) Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J Am Chem Soc 136:15969–15976CrossRefGoogle Scholar
  8. 8.
    Lv H, Xi Z, Chen Z, Guo S, Yu Y, Zhu W, Li Q, Zhang X, Pan M, Lu G, Mu S, Sun S (2015) A new core/shell NiAu/Au nanoparticle catalyst with Pt-like activity for hydrogen evolution reaction. J Am Chem Soc 137:5859–5862CrossRefGoogle Scholar
  9. 9.
    Iwase A, Yoshino S, Takayama T, Ng YH, Amal R, Kudo A (2016) Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoOx-Loaded BiVO4, and a reduced graphene oxide electron mediator. J Am Chem Soc 138:10260–10264CrossRefGoogle Scholar
  10. 10.
    Liu E, Qi L, Bian J, Chen Y, Hu X, Fan J, Liu H, Zhu C, Wang Q (2015) A facile strategy to fabricate plasmonic Cu modified TiO2 nano-flower films for photocatalytic reduction of CO2 to methanol. Mater Res Bull 68:203–209CrossRefGoogle Scholar
  11. 11.
    Sahara G, Kumagai H, Maeda K, Kaeffer N, Artero V, Higashi M, Abe R, Ishitani O (2016) Photoelectrochemical reduction of CO2 coupled to water oxidation using a photocathode with a Ru(II)-Re(I) complex photocatalyst and a CoOx/TaON photoanode. J Am Chem Soc 138:14152–14158CrossRefGoogle Scholar
  12. 12.
    Wang H, Liu R, Li Y, Lv X, Wang Q, Zhao S, Yuan K, Cui Z, Li X, Xin S, Zhang R, Lei M, Lin Z (2018) Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction. Joule 2:337–348CrossRefGoogle Scholar
  13. 13.
    Wang Q, Li X, Wu LY, Lu PF, Di ZF (2019) Electronic and interface properties in graphene oxide/hydrogen-passivated Ge heterostructure. Phys Status Solidi RRL 13:1800461CrossRefGoogle Scholar
  14. 14.
    Raciti D, Livi KJ, Wang C (2016) Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett 16:6829–6835CrossRefGoogle Scholar
  15. 15.
    Lu B, Liu A, Wu H, Shen Q, Zhao T, Wang J (2016) Hollow Au–Cu2O–Core–Shell nanoparticles with geometry-dependent optical properties as efficient plasmonic photocatalysts under visible light. Langmuir 32:3085–3094CrossRefGoogle Scholar
  16. 16.
    Minguez-Bacho I, Courte M, Fan HJ, Fichou D (2015) Conformal Cu2S-coated Cu2O nanostructures grown by ion exchange reaction and their photoelectrochemical properties. Nanotechnology 26:185401CrossRefGoogle Scholar
  17. 17.
    Wu L, L-k Tsui, Swami N, Zangari G (2010) Photoelectrochemical stability of electrodeposited Cu2O films. J Phys Chem C 114:11551–11556CrossRefGoogle Scholar
  18. 18.
    Han S-K, Gu C, Zhao S, Xu S, Gong M, Li Z, Yu S-H (2016) Precursor triggering synthesis of self-coupled sulfide polymorphs with enhanced photoelectrochemical properties. J Am Chem Soc 138:12913–12919CrossRefGoogle Scholar
  19. 19.
    Guo LM, Deng JN, Wang GZ, Hao YN, Bi K, Wang XH, Yang Y (2018) N, P-doped CoS2 embedded in TiO2 nanoporous films for Zn-air batteries. Adv Functl Mater 28:1804540CrossRefGoogle Scholar
  20. 20.
    Wang X, Ke Y, Pan H, Ma K, Xiao Q, Yin D, Wu G, Swihart MT (2015) Cu-deficient plasmonic Cu2−xS nanoplate electrocatalysts for oxygen reduction. ACS Catal 5:2534–2540CrossRefGoogle Scholar
  21. 21.
    Guo L, Zhong C, Shi L, Ju L, Wang X, Yang D, Bi K, Hao Y, Yang Y (2018) Phase and defect engineering of MoS2 stabilized in periodic TiO2 nanoporous film for enhanced solar water splitting. Adv Optical Mater 7:1801403CrossRefGoogle Scholar
  22. 22.
    Li CW, Kanan MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134:7231–7234CrossRefGoogle Scholar
  23. 23.
    Bi K, Yang D, Chen J, Wang Q, Wu H, Lan C, Yang Y (2019) Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials. Photonics Research 7:457–462CrossRefGoogle Scholar
  24. 24.
    Bi K, Bi MH, Hao YN, Luo W, Cai ZM, Wang XH, Huang YH (2018) Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51:513–523CrossRefGoogle Scholar
  25. 25.
    Zhang Z, Huang J, Fang Y, Zhang M, Liu K, Dong B (2017) A nonmetal plasmonic Z-scheme photocatalyst with UV-to NIR-driven photocatalytic protons reduction. Adv Mater 29:1606688CrossRefGoogle Scholar
  26. 26.
    Lin L, Naihua M, Yan W, Zhang S (2016) Sulfur-depleted monolayered molybdenum disulfide nanocrystals for superelectrochemical hydrogen evolution reaction. ACS Nano 10:8929–8937CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical Communications, School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations