Synergistic antioxidant activity and anticancer effect of green tea catechin stabilized on nanoscale cyclodextrin-based metal–organic frameworks

  • Fei KeEmail author
  • Mengran Zhang
  • Nianqiao Qin
  • Gege Zhao
  • Jun Chu
  • Xiaochun WanEmail author
Materials for life sciences


Green tea catechins have received significant attention due to their potent antioxidant activity as well as diverse biological properties. Stabilizing and protecting catechins from degradation is very important but challenging. In this work, a nanosized edible γ-cyclodextrin-based metal–organic framework (CD-MOF) was designed and fabricated by a facile vapor diffusion route and applied for the encapsulation of a model green tea catechin, (-)-epigallocatechin gallate (EGCG) for the first time. Downsizing CD-MOF to the nanoscale is a suitable method to tackle down new applications. Significantly, the antioxidant activity results show that the CD-MOF-EGCG can remarkably enhance the antioxidant activity in alkaline solutions, as compared to that of free EGCG. Furthermore, the prepared CD-MOF-EGCG showed strong cancer cell growth inhibitory effects on C6 cells as confirmed by the cell viability assay. This work demonstrates that such safe and nontoxic nanoscale CD-MOF-based porous materials hold great promise for applications in the field of stabilization of catechins for biomedical applications.



This work was supported by the National Natural Science Foundation of China (NSFC, 21501003), Natural Science Foundation of Anhui Province (1608085QB27), China Postdoctoral Science Foundation funded project (2015M581973), the Scientific Research Foundation of Anhui Agricultural University (GrantNo. yj2015-26), and Provincial Undergraduate Training Programs for Innovation and Entrepreneurship of Anhui Agriculture University(201710364054).


  1. 1.
    Grzesik M, Bartosz G, Dziedzic A, Narog D, Namiesnik J, Sadowska-Bartosz I (2018) Antioxidant properties of ferrous flavanol mixtures. Food Chem 268:567–576CrossRefGoogle Scholar
  2. 2.
    Iñiguez-Franco F, Soto-Valdez H, Peralta E, Fernando Ayala-Zavala J, Auras R, Gámez-Meza N (2012) Antioxidant activity and diffusion of catechin and epicatechin from antioxidant active films made of poly (l-lactic acid). J Agric Food Chem 60:6515–6523CrossRefGoogle Scholar
  3. 3.
    Aree T, Jongrungruangchok S (2016) Enhancement of antioxidant activity of green tea epicatechins in β-cyclodextrin cavity: single-crystal X-ray analysis, DFT calculation and DPPH assay. Carbohydr Polym 151:1139–1151CrossRefGoogle Scholar
  4. 4.
    Bae KH, Tan S, Yamashita A, Ang WX, Gao SJ, Wang S, Chung JE, Kurisawa M (2017) Hyaluronic acid-green tea catechin micellar nanocomplexes: fail-safe cisplatin nanomedicine for the treatment of ovarian cancer without off-target toxicity. Biomaterials 148:41–53CrossRefGoogle Scholar
  5. 5.
    Ray L, Kumar P, Gupta KC (2013) The activity against Ehrlich’s ascites tumors of doxorubicin contained in self assembled, cell receptor targeted nanoparticle with simultaneous oral delivery of the green tea polyphenol epigallocatechin-3-gallate. Biomaterials 34:3064–3076CrossRefGoogle Scholar
  6. 6.
    Dube A, Ng K, Nicolazzo JA, Larson I (2010) Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution. Food Chem 122:662–667CrossRefGoogle Scholar
  7. 7.
    Chanphai P, Tajmir-Riahi HA (2018) Conjugation of tea catechins with chitosan nanoparticles. Food Hydrocoll 84:561–570CrossRefGoogle Scholar
  8. 8.
    Ahmad M, Mudgil P, Gani A, Hamed F, Masoodi FA, Maqsood S (2019) Nano-encapsulation of catechin in starch nanoparticles: characterization, release behavior and bioactivity retention during simulated in vitro digestion. Food Chem 270:95–104CrossRefGoogle Scholar
  9. 9.
    Gómez-Mascaraque LG, Soler C, Lopez-Rubio A (2016) Stability and bioaccessibility of EGCG within edible micro-hydrogels. Chitosan vs. gelatin, a comparative study. Food Hydrocoll 61:128–138CrossRefGoogle Scholar
  10. 10.
    Aree T, Jongrungruangchok S (2018) β-Cyclodextrin encapsulation elevates antioxidant capacity of tea: a closing chapter on non-epicatechins, atomistic insights from X-ray analysis, DFT calculation and DPPH assay. Carbohydr Polym 194:24–33CrossRefGoogle Scholar
  11. 11.
    Kirchon A, Feng L, Drake HF, Joseph EA, Zhou H-C (2018) From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem Soc Rev 47:8611–8638CrossRefGoogle Scholar
  12. 12.
    Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674CrossRefGoogle Scholar
  13. 13.
    Jiao L, Wang Y, Jiang H-L, Xu Q (2018) Metal-organic frameworks as platforms for catalytic applications. Adv Mater 30:1703663CrossRefGoogle Scholar
  14. 14.
    Li G, Zhao S, Zhang Y, Tang Z (2018) Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives. Adv Mater 30:1800702CrossRefGoogle Scholar
  15. 15.
    Wu L, Tong Y, Gu L, Xue Z, Yuan Y (2018) MOFs as an electron-transfer-bridge between a dye photosensitizer and a low cost Ni2P co-catalyst for increased photocatalytic H2 generation. Sustain Energy Fuels 2:2502–2506CrossRefGoogle Scholar
  16. 16.
    Liu X-L, Wang R, Zhang M-Y, Yuan Y-P, Xue C (2015) Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiOx nanoparticles for efficient visible-light-driven hydrogen generation. APL Mater 3:104403CrossRefGoogle Scholar
  17. 17.
    Wang R, Gu L, Zhou J, Liu X, Teng F, Li C, Shen Y, Yuan Y (2015) Quasi-polymeric metal–organic framework UiO-66/g-C3N4 heterojunctions for enhanced photocatalytic hydrogen evolution under visible light irradiation. Adv Mater Interfaces 2:1500037CrossRefGoogle Scholar
  18. 18.
    Yuan Y-P, Yin L-S, Cao S-W, Xu G-S, Li C-H, Xue C (2015) Improving photocatalytic hydrogen production of metal–organic framework UiO-66 octahedrons by dye-sensitization. Appl Catal B Environ 168–169:572–576CrossRefGoogle Scholar
  19. 19.
    Simon-Yarza T, Mielcarek A, Couvreur P, Serre C (2018) Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine. Adv Mater 30:1707365CrossRefGoogle Scholar
  20. 20.
    Horcajada P, Chalati T, Serre C et al (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178CrossRefGoogle Scholar
  21. 21.
    Yang Y, Xia F, Yang Y, Gong B, Xie A, Shen Y, Zhu M (2017) Litchi-like Fe3O4@Fe-MOF capped with HAp gatekeepers for pH-triggered drug release and anticancer effect. J Mater Chem B 5:8600–8606CrossRefGoogle Scholar
  22. 22.
    Bunzen H, Kolbe F, Kalytta-Mewes A, Sastre G, Brunner E, Volkmer D (2018) Achieving large volumetric gas storage capacity in metal-organic frameworks by kinetic trapping: a case study of Xenon loading in MFU-4. J Am Chem Soc 140:10191–10197CrossRefGoogle Scholar
  23. 23.
    Zhang X, Zhang Q, Yue D et al (2018) Flexible metal-organic framework-based mixed-matrix membranes: a new platform for H2S sensors. Small 14:1801563CrossRefGoogle Scholar
  24. 24.
    Ke F, Jiang J, Li Y, Liang J, Wan X, Ko S (2017) Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@metal-organic framework core-shell magnetic microspheres. Appl Surf Sci 413:266–274CrossRefGoogle Scholar
  25. 25.
    Ke F, Peng C, Zhang T, Zhang M, Zhou C, Cai H, Zhu J, Wan X (2018) Fumarate-based metal-organic frameworks as a new platform for highly selective removal of fluoride from brick tea. Sci Rep 8:939CrossRefGoogle Scholar
  26. 26.
    Horcajada P, Gref R, Baati T et al (2012) Metal–organic frameworks in biomedicine. Chem Rev 112:1232–1268CrossRefGoogle Scholar
  27. 27.
    Qiu C, Wang J, Qin Y, Fan H, Xu X, Jin Z (2018) Green synthesis of cyclodextrin-based metal-organic frameworks through the seed-mediated method for the encapsulation of hydrophobic molecules. J Agric Food Chem 66:4244–4250CrossRefGoogle Scholar
  28. 28.
    Forgan RS, Smaldone RA, Gassensmith JJ et al (2012) Nanoporous carbohydrate metal-organic frameworks. J Am Chem Soc 134:406–417CrossRefGoogle Scholar
  29. 29.
    Smaldone RA, Forgan RS, Furukawa H, Gassensmith JJ, Slawin AMZ, Yaghi OM, Stoddart JF (2010) Metal-organic frameworks from edible natural products. Angew Chem Int Ed 49:8630–8634CrossRefGoogle Scholar
  30. 30.
    Li H, Lv N, Li X et al (2017) Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale 9:7454–7463CrossRefGoogle Scholar
  31. 31.
    Hartlieb KJ, Ferris DP, Holcroft JM, Kandela I, Stern CL, Nassar MS, Botros YY, Stoddart JF (2017) Encapsulation of ibuprofen in CD-MOF and related bioavailability studies. Mol Pharm 14:1831–1839CrossRefGoogle Scholar
  32. 32.
    Li H, Hill MR, Huang R, Doblin C, Lim S, Hill AJ, Babarao R, Falcaro P (2016) Facile stabilization of cyclodextrin metal-organic frameworks under aqueous conditions via the incorporation of C-60 in their matrices. Chem Commun 52:5973–5976CrossRefGoogle Scholar
  33. 33.
    Moussa Z, Hmadeh M, Abiad MG, Dib OH, Patra D (2016) Encapsulation of curcumin in cyclodextrin-metal organic frameworks: dissociation of loaded CD-MOFs enhances stability of curcumin. Food Chem 212:485–494CrossRefGoogle Scholar
  34. 34.
    Wang Q, Cao J, Yu H, Zhang J, Yuan Y, Shen X, Li C (2019) The effects of EGCG on the mechanical, bioactivities, cross-linking and release properties of gelatin film. Food Chem 271:204–210CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Tea Plant Biology and Utilization and Department of Applied ChemistryAnhui Agricultural UniversityHefeiPeople’s Republic of China
  2. 2.Key Laboratory of Xin’an Medicine, Ministry of EducationAnhui University of Traditional Chinese MedicineHefeiPeople’s Republic of China

Personalised recommendations