Journal of Materials Science

, Volume 54, Issue 13, pp 9958–9968 | Cite as

Dissipative particle dynamics simulations of centrifugal melt electrospinning

  • Kaili Li
  • Yulong Xu
  • Yong LiuEmail author
  • Mohamedazeem M. Mohideen
  • Haifeng He
  • Seeram Ramakrishna


The fibers obtained by centrifugal melt electrospinning exhibit high production efficiency, controllable morphology, and excellent mechanical properties. Therefore, centrifugal electrospinning technology is in alignment with the industrial development trend of superfine fiber preparation. However, during the rapid development of this new spin method, some fundamental understanding of the relationships between the fiber performance and centrifugal force, electric field force, and gravity is unclear. In this study, the effect of the spin factors on the fiber properties (diameter, yield, and molecular chain formation) is investigated by dissipative particle dynamics simulation. The results show that in an electrostatic field, if the rotating speed, temperature, and electric field intensity increases, the fiber diameter decreases, and fiber productivity and chain length increase. In a pulsed electric field, the fiber diameter is very small when the duty ratio is 70% and the chain length is long when the duty ratio is 100%. However, as the frequency increases, the fiber diameter decreases sharply, whereas the chain length increases gradually. When the fiber drops rapidly, the chain length generally becomes longer with increasing steps. The above knowledge of the fiber performance and spin factors will contribute significantly to obtain high-quality fibers using centrifugal melt electrospinning.



The paper was financially supported by the National Natural Science Foundations of China (Grant Number 21374008).

Compliance with ethical standards

Conflict of interest



  1. 1.
    Wu S, Peng H, Li X, Streubel PN, Liu Y, Duan B (2017) Effect of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal melt electrospun poly (L-lactic acid) fibrous meshes. Biofabrication 9:0441064CrossRefGoogle Scholar
  2. 2.
    Wang L, Wang B, Ahmad Z, Li J, Chang M (2019) Dual rotation centrifugal electrospinning: a novel approach to engineer multi-directional and layered fiber composite matrices. Drug Deliv Transl Res 9:204–214CrossRefGoogle Scholar
  3. 3.
    Wang L, Ahmad Z, Huang J, Li J, Chang M (2017) Multi-compartment centrifugal electrospinning based composite fibers. J Chem Eng 330:541–549CrossRefGoogle Scholar
  4. 4.
    Erickson AE, Edmondson D, Chang FC, Wood D, Gong A, Levengood SL, Zhang MQ (2015) High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning. Carbohydr Polym 134:467–474CrossRefGoogle Scholar
  5. 5.
    Larrondo L, St. John Manley R (1981) Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci Pol Phys 6:909–920CrossRefGoogle Scholar
  6. 6.
    Visser J, Melchels FPW, Jeon JE et al (2015) Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun 6:6933CrossRefGoogle Scholar
  7. 7.
    Castilho M, Hochleitner G, Wilson W, Van Rietbergen B, Dalton PD, Groll Jürgen, Groll JM, Keita I (2018) Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds. Sci Rep 8:1245CrossRefGoogle Scholar
  8. 8.
    Martine LC, Holzapfel BM, McGovern JA et al (2017) Engineering a humanized bone organ model in mice to study bone metastases. Nat Protoc 12:639–663CrossRefGoogle Scholar
  9. 9.
    Li T, Jiang Z, Yan D, Nies E (2010) A polyethylene chain investigated with replica exchange molecular dynamics simulation: equilibrium lamellar thickness and melting point, ordering and free energy. Polymer 51:5612–5622CrossRefGoogle Scholar
  10. 10.
    Chudoba R, Heyda J, Dzubiella J (2017) Temperature-dependent implicit-solvent model of polyethylene glycol in aqueous solution. J Chem Theory Comput 13:6317–6327CrossRefGoogle Scholar
  11. 11.
    Español P, Warren PB (2017) Perspective: dissipative particle dynamics. J Chem Phys 146:150901CrossRefGoogle Scholar
  12. 12.
    Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 11:4423–4435CrossRefGoogle Scholar
  13. 13.
    Zhou B, Luo W, Yang J, Duan XB, Wen YW, Zhou HM, Chen R, Shan B (2017) Simulation of dispersion and alignment of carbon nanotubes in polymer flow using dissipative particle dynamics. Comput Mater Sci 126:35–42CrossRefGoogle Scholar
  14. 14.
    Hu J, Zhang C, Li X, Han J, Ji F (2017) Architectural evolution of phase domains in shape memory polyurethanes by dissipative particle dynamics simulations. Polym Chem 8:260–271CrossRefGoogle Scholar
  15. 15.
    Marson RL, Huang Y, Huang M, Fu T, Larson RG (2018) Inertio-capillary cross-streamline drift of droplets in Poiseuille flow using dissipative particle dynamics simulations. Soft Matter 14:2267–2280CrossRefGoogle Scholar
  16. 16.
    Liu H, Cavaliere S, Jones DJ, Roziere J, Paddison SJ (2018) Morphology of hydrated nafion through a quantitative cluster analysis: a case study based on dissipative particle dynamics simulations. J Phys Chem C 122:13130–13139CrossRefGoogle Scholar
  17. 17.
    Du CM, Ji YJ, Xue JW, Hou TJ, Tang JX, Lee ST, Li YY (2015) Morphology and performance of polymer solar cell characterized by DPD simulation and graph theory. Sci Rep 5:16854CrossRefGoogle Scholar
  18. 18.
    Lu T, Guo H (2018) Phase behavior of lipid bilayers: a dissipative particle dynamics simulation study. Adv Theory Simul 5:1–13Google Scholar
  19. 19.
    Liu Y, Wang X, Yan H, Guan C, Yang W (2011) Dissipative particle dynamics simulation on the fiber dropping process of melt electrospinning. J Mater Sci 46:7877–7882. CrossRefGoogle Scholar
  20. 20.
    Song Q, Zhang J, Liu Y (2017) Mesoscale simulation of a melt electrospinning jet in a periodically changing electric field. Chem J Chin Univ 38:966–974Google Scholar
  21. 21.
    Wang X, Liu Y, Zhang C, An Y, He X, Yang W (2013) Simulation on electrical field distribution and fiber falls in melt electrospinning. J Nanosci Nanotechnol 13:4680–4685CrossRefGoogle Scholar
  22. 22.
    Liu Y, Kong B, Yang X (2005) Studies on some factors influencing the interfacial tension measurement of polymers. Polymer 46:2811–2816CrossRefGoogle Scholar
  23. 23.
    Liu Y, Yang X, Yang M, Li T (2004) Mesoscale simulation on the shape evolution of polymer drop and initial geometry influence. Polymer 45:6985–6991CrossRefGoogle Scholar
  24. 24.
    Lísal M, Šindelka K, Suchá L, Limpouchová Z, Procházka K (2017) Dissipative particle dynamics simulations of polyelectrolyte self-assemblies. methods with explicit electrostatics. Polym Sci Ser C 59:77–101CrossRefGoogle Scholar
  25. 25.
    Alizadehrad D, Fedosov DA (2018) Static and dynamic properties of smoothed dissipative particle dynamics. J Comput Phys 356:303–318CrossRefGoogle Scholar
  26. 26.
    Wang Z, Quik JTK, Song L, Wouterse M, Peijnenburg WJGM (2018) Dissipative particle dynamic simulation and experimental assessment of the impacts of humic substances on aqueous aggregation and dispersion of engineered nanoparticles. Environ Toxicol Chem 37:1024–1031CrossRefGoogle Scholar
  27. 27.
    Ketkaew R, Tantirungrotechai Y (2018) Dissipative particle dynamics study of SWCNT reinforced natural rubber composite system: an important role of self-avoiding model on mechanical properties. Macromol Theor Simul 27:1700093CrossRefGoogle Scholar
  28. 28.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRefGoogle Scholar
  29. 29.
    Liu SL, Long YZ, Zhang ZH, Zhang HD, Sun B, Zhang JC, Han WP (2013) Assembly of oriented ultrafine polymer fibers by centrifugal electrospinning. J Nanomater 2013:713275Google Scholar
  30. 30.
    Erickson AE, Edmondson D, Chang FC, Wood D, Gong A, Levengood SL, Zhang MQ (2015) High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning. Carbohydr Polym 134:467–474CrossRefGoogle Scholar
  31. 31.
    Liu SL, Sun B, Yin HX, Zhang ZH, Tang CC, Long YZ, Han YM (2013) Fabrication of fluorescent polymer crossbar arrays and microropes via centrifugal electrospinning. Adv Mater Res 517:785–786CrossRefGoogle Scholar
  32. 32.
    Li Z, Yuan Y, Chen B, Liu Y, Nie J, Ma G (2017) Photo and thermal cured silicon-containing diethynylbenzene fibers via melt electrospinning with enhanced thermal stability. J Polym Sci Pol Chem 55:2815–2823CrossRefGoogle Scholar
  33. 33.
    Peng H (2017) The experiment and simulation exploration of centrifugal melt electrospinning. Master Thesis, Beijing University of Chemical TechnologyGoogle Scholar
  34. 34.
    Luo C, Kröger M, Sommer J (2017) Molecular dynamics simulations of polymer crystallization under confinement: entanglement effect. Polymer 109:71–84CrossRefGoogle Scholar
  35. 35.
    Hagita K, Morita H, Takano H (2016) Molecular dynamics simulation study of a fracture of filler-filled polymer nanocomposites. Polymer 99:368–375CrossRefGoogle Scholar
  36. 36.
    Sliozberg YR, Mrozek RA, Schieber JD, Kröger M, Lenhart JL, Andzelm JW (2013) Effect of polymer solvent on the mechanical properties of entangled polymer gels: coarse-grained molecular simulation. Polymer 54:2555–2564CrossRefGoogle Scholar
  37. 37.
    Kröger M (2005) Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems. Comput Phys Commun 168:209–232CrossRefGoogle Scholar
  38. 38.
    Xie G, Wang Y, Han XT, Gong Y, Wang JP, Zhang JM, Deng DP, Liu Y (2016) Pulsed electric fields on poly-l-(lactic acid) melt electrospun fibers. Ind Eng Chem Res 55:7116–7123CrossRefGoogle Scholar
  39. 39.
    Li K, Wang Y, Xie G, Kang JX, He H, Wang KJ, Liu Y (2018) Solution electrospinning with a pulsed electric field. J Appl Polym Sci 135:46130CrossRefGoogle Scholar
  40. 40.
    Xie J, Jiang J, Davoodi P, Srinivasan MP, Wang C (2015) Electrohydrodynamic atomization: a two-decade effort to produce and process micro-/nanoparticulate materials. Chem Eng Sci 125:32–57CrossRefGoogle Scholar
  41. 41.
    Sarkar S, Deevi S, Tepper G (2007) Biased AC electrospinning of aligned polymer nanofibers. Macromol Rapid Commun 28:1034–1039CrossRefGoogle Scholar
  42. 42.
    Pokorny P, Kostakova E, Sanetrnik F (2014) Effective AC needleless and collectorless electrospinning for yarn production. Phys Chem Chem Phys 16:26816–26822CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mechanical and Electric EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
  3. 3.College of Materials Science and EngineeringShandong University of Science and TechnologyQingdaoChina
  4. 4.Nanoscience and Nanotechnology InitiativeNational University of SingaporeSingaporeSingapore

Personalised recommendations