Advertisement

Journal of Materials Science

, Volume 54, Issue 13, pp 9543–9552 | Cite as

Two-dimensional black arsenic for Li-ion battery applications: a DFT study

  • B. AkgencEmail author
Computation and theory
  • 52 Downloads

Abstract

Two-dimensional materials have the greatest surface to volume ratio and are sought for a number of applications including electrodes in electrochemical storage. Understanding the mobility and chemical exchange characteristics of such layers with ionic charge carriers is vital for electrochemical functionality. Li-decorated b-As has been proposed as a promising material due to fast and directional nature of Li-ion diffusion, making it suitable for use as anode material in Li-ion batteries. Pathways of Li-ion diffusion on such structures is still under debate, and for this purpose, we investigated Li-decorated monolayer and bilayer b-As to shed light on Li mobility, along the armchair and zigzag direction in particular, and estimate the relevant diffusion barriers using DFT. The calculations reveal that (1) functionalization of the surface by Li atoms is energetically favorable, (2) binding of each single Li atom occurs via 2 eV and (3) H site is found the most stable site for adsorption energy of Li-ions. The diffusion barrier of Li-ion on b-As was found to be strongly dependent on anisotropy as the energy barrier along the zigzag direction (0.2 eV) is almost four times lower than the armchair direction (0.8 eV). Moreover, the open-circuit voltage across such a layer decreases with the increase in concentration of Li-ion doping of b-As. OCV is calculated as 4 V for a Li concentration of 20% which is suitable for anode materials. We also discuss some peculiar features of the electronic structure of b-As with Li decoration.

Notes

Acknowledgements

Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). The author acknowledges financial support the KLU-BAP under the Project Number 174.

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  2. 2.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  3. 3.
    Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145CrossRefGoogle Scholar
  4. 4.
    Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491–495CrossRefGoogle Scholar
  5. 5.
    Wu Z, Ni Z (2017) Spectroscopic investigation of defects in two-dimensional materials. Nanophotonics 6(6):1219–1237CrossRefGoogle Scholar
  6. 6.
    Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419–425CrossRefGoogle Scholar
  7. 7.
    Yagmurcukardes M, Peeters FM, Senger RT, Sahin H (2016) Nanoribbons: from fundamentals to state-of-the-art applications. App Phys Rev 3(4):041302CrossRefGoogle Scholar
  8. 8.
    Ozcelik VO, Kecik D, Durgun E, Ciraci S (2015) Adsorption of group IV elements on graphene, silicene, germanene and stanene: Dumbbell formation. J Phys Chem C 119(1):845–853CrossRefGoogle Scholar
  9. 9.
    Cahangirov S, Topsakal M, Aktürk E, Sahin H, Ciraci S (2009) Two-and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102(23):236804CrossRefGoogle Scholar
  10. 10.
    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 108(15):155501CrossRefGoogle Scholar
  11. 11.
    Mannix AJ, Zhang Z, Guisinger NP, Yakobson BI, Hersam MC (2018) Borophene as a prototype for synthetic 2D materials development. Nat Nanotechnol 13(6):444–450CrossRefGoogle Scholar
  12. 12.
    Pekoz R, Konuk M, Kilic ME, Durgun E (2018) Two-dimensional fluorinated Boron sheets: mechanical, electronic, and thermal properties. ACS Omega 3(2):1815–1822CrossRefGoogle Scholar
  13. 13.
    Evans MH, Joannopoulos JD, Pantelides (2005) Electronic and mechanical properties of planar and tubular boron structures. Phys Rev B 72:045434–045440CrossRefGoogle Scholar
  14. 14.
    Penev ES, Bhowmick S, Sadrzadeh A, Yakobson BI (2012) Polymorphism of two-dimensional boron. Nano Lett 12(5):2441–2445CrossRefGoogle Scholar
  15. 15.
    Yang A, Wang D, Wang X, Zhang D, Koratkar N, Rong M (2018) Recent advances in phosphorene as a sensing material. Nano Today 20:13–32CrossRefGoogle Scholar
  16. 16.
    Cakir D, Sahin H, Peeters F (2014) Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys Rev B 90(20):205421CrossRefGoogle Scholar
  17. 17.
    Ersan F, Akturk E, Ciraci S (2016) Interaction of adatoms and molecules with single-layer arsenene phases. J Phys Chem C 120(26):14345–14355CrossRefGoogle Scholar
  18. 18.
    Kecik D, Durgun E, Ciraci S (2016) Stability of single-layer and multilayer arsenene and their mechanical and electronic properties. Phys Rev B 94(20):205409CrossRefGoogle Scholar
  19. 19.
    Kou L, Ma Y, Tan X, Frauenheim T, Du A, Smith S (2015) Structural and electronic properties of layered arsenic and antimony arsenide. J Phys Chem C 119(12):6918–6922CrossRefGoogle Scholar
  20. 20.
    Tian H, Guo QS, Xie YJ, Zhao H, Li C, Cha JJ, Xia FN, Wang H (2016) Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv Mater 28(25):4991–4997CrossRefGoogle Scholar
  21. 21.
    Ge SF, Li CK, Zhang XM, Zhang CL, Zhang YD, Qui J, Wang QS, Liu JK, Jia S, Feng F (2015) Dynamical evolution of anisotropic response in black phosphorus under ultrafast photoexcitation. Nano Lett 15(7):4650–4656CrossRefGoogle Scholar
  22. 22.
    Urban A, Seo DH, Ceder G (2016) Computational understanding of Li-ion batteries. NPJ Comput Mater 2:16002CrossRefGoogle Scholar
  23. 23.
    Balakrishnan N, Kudrynskyi ZR, Smith EF, Fay MW, Makarovsky O, Kovalyuk ZD, Eaves L, Beton PH, Patane A (2017) Engineering p–n junctions and bandgap tuning of InSe nanolayers by controlled oxidation. 2D Mater 4(2):025043CrossRefGoogle Scholar
  24. 24.
    Bottari G, Herranz MA, Wibmer L, Volland M, Rodriguez-Perez L, Guldi DM, Hirsch A, Martin N, D’Souza F, Torres T (2017) Chemical functionalization and characterization of graphene-based materials. Chem Soc Rev 46(15):4464–4500CrossRefGoogle Scholar
  25. 25.
    Elias DC, Nair RR, Mohiuddion TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 323(5914):610–613CrossRefGoogle Scholar
  26. 26.
    Kim J, Baik SS, Ryu SH, Sohn Y, Park S, Park BG, Denlinger J, Yi Y, Choi HJ, Kim KS (2015) Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349(6249):723–726CrossRefGoogle Scholar
  27. 27.
    Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tomanek D, Ye PD (2014) Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4):4033–4041CrossRefGoogle Scholar
  28. 28.
    Ding Y, Wang Y (2015) Structural, electronic and magnetic properties of adatom adsorptions on black and blue phosphorene: a first-principle study. J Phys Chem C 119(19):10610–10622CrossRefGoogle Scholar
  29. 29.
    Nie A, Cheng Y, Ning S, Foroozan T, Yasaei P, Li W, Song B, Yuan Y, Chen L, Salehi-Khojin A, Mashayek F, Shahbazian-Yassar R (2016) Selective ionic transport pathways in phosphorene. Nano Lett 16(4):2240–2247CrossRefGoogle Scholar
  30. 30.
    Biele R, Flores E, Ares JR, Sanchez C, Ferrer IJ, Rubio-Bollinger G, Castellanos-Gomez A, D’Agosta R (2018) Strain-induced band gap engineering in layered \(\text{ TiS }_3\). Nano Res 11(1):225–232CrossRefGoogle Scholar
  31. 31.
    Island R, Biele JO, Barawi M, Clamagirand JM, Ares JR, Sanchez C, vander Zant HSJ, Ferrer IJ, D’Agosta R, Castellanos-Gomez A (2016) Titanium trisulfide(\(\text{ TiS }_3\)): a 2D semiconductor with quasi-1D optical and electronic properties. Sci Rep 6:22214CrossRefGoogle Scholar
  32. 32.
    Chen Y, Chen C, Kealhofer R, Liu H, Yuan Z, Jiang L, Suh J, Park J, Ko C, Choe HS, Avila J, Zhong M, Wei Z, Li J, Li S, Gao H, Liu Y, Analytis J, Xia Q, Asensio MC, Wu J (2018) Black arsenic: a layered semiconductor with extreme in-plane anisotropy. Adv Mater 30:1800754CrossRefGoogle Scholar
  33. 33.
    Krawiec M (2018) Functionalization of group-14 two-dimensional materials. J Phys Condens Matter 30(23):233003CrossRefGoogle Scholar
  34. 34.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558CrossRefGoogle Scholar
  35. 35.
    Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169CrossRefGoogle Scholar
  36. 36.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758CrossRefGoogle Scholar
  37. 37.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865CrossRefGoogle Scholar
  38. 38.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799CrossRefGoogle Scholar
  39. 39.
    Medeiros PVC, Stafsrom S, Bjork J (2014) Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding. Phys Rev B 89:041407CrossRefGoogle Scholar
  40. 40.
    Medeiros PVC, Tsirkin SS, Stafstrom S, Bjork J (2015) Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator. Phys Rev B 91:041116CrossRefGoogle Scholar
  41. 41.
    Henkelman G, Arnaldsson A, Jonsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36(3):354–360CrossRefGoogle Scholar
  42. 42.
    Alfe D (2009) PHON: A program to calculate phonons using the small displacement method. Comput Pyhs Commun 180(12):2622–2633CrossRefGoogle Scholar
  43. 43.
    Sun X, Wang Z, Fu YQ (2015) Defect-mediated lithium adsorption and diffusion on monolayer molybdenum disulfide. Sci Rep 5:18712CrossRefGoogle Scholar
  44. 44.
    Thiniust S, Islam MM, Heitjanst P, Bredow T (2014) Theoretical study of Li migration in lithium–graphite intercalation compounds with dispersion-corrected DFT methods. J Phys Chem C 118(5):2273–2280CrossRefGoogle Scholar
  45. 45.
    Toyoura K, Koyama Y, Kuwabara A, Oba F, Tanaka I (2008) First-principle approach to chemical diffusion of lithium atoms in a graphite intercalation compound. Phy Rev B 78(21):214303CrossRefGoogle Scholar
  46. 46.
    Kadioglu Y, Santana JA, Ozaydin HD, Ersan F, Aktürk OU, Aktürk E, Reboredo FA (2018) Diffusion quantum Monte Carlo and density functional calculations of the structural stability of bilayer arsenene. J Chem Phys 148(21):214706CrossRefGoogle Scholar
  47. 47.
    Li W, Yang Y, Zhang G, Zhang YW (2015) Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett 15(3):1691–1697CrossRefGoogle Scholar
  48. 48.
    Lin HF, Liu LM, Zhao J (2017) 2D lateral heterostructures of monolayer and bilayer phosphorene. J Mater Chem C 5(9):2291–2300CrossRefGoogle Scholar
  49. 49.
    Elias DC, Gorbachev RV, Mayorov AS, Morozov SV, Zhukov AA, Blake P, Ponomarenko LA, Grigorieva IV, Novoselov KS, Guinea F, Geim AK (2011) Dirac cones reshaped by interaction effects in suspended graphene. Nat Phys 7(9):701–704CrossRefGoogle Scholar
  50. 50.
    Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56(3):1354CrossRefGoogle Scholar
  51. 51.
    Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G (2014) First-principle prediction of redox potentials in transition-metal compounds with LDA+U. Phys Rev B 70(23):235121CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsKirklareli UniversityKirklareliTurkey

Personalised recommendations