Advertisement

Journal of Materials Science

, Volume 54, Issue 13, pp 9613–9621 | Cite as

Elastocaloric effect with small hysteresis in bamboo-grained Cu–Al–Mn microwires

  • Bo Yuan
  • Xuejie Zhu
  • Xuexi ZhangEmail author
  • Mingfang Qian
Energy materials
  • 54 Downloads

Abstract

The elastocaloric effect in Cu–Al–Mn shape memory alloy microwires fabricated by Taylor–Ulitovsky method was investigated. The microwires with bamboo-like grain architecture, homogeneous composition and favorable orientation were successfully prepared through high-temperature annealing heat treatment. The formation of the bamboo grains and high specific surface area contribute to the reduced martensite transformation hysteresis. A large recoverable strain up to 8.8% was achieved by two-way shape memory cycling under a low stress of 50 MPa. Consequently, the microwire exhibited a large entropy change ΔSiso = 16.1 J kg−1 K−1. Furthermore, the refrigeration capacity (RC) reached ~ 502 J kg−1 over a working temperature interval ΔTFWHM = 31 K during direct transformation under 50 MPa uniaxial stress. Finally, a reversible adiabatic temperature change ΔTad = 3.9 K under a stress of 150 MPa was obtained. This proves that the present Cu–Al–Mn microwire, with bamboo grains, high refrigeration property and low cost, may act as promising candidate materials for elastocaloric cooling.

Notes

Acknowledgements

Financial supports from the National Key R&D Program of China (Grant No. 2017YFB0703103), the National Natural Science Foundation of China (NSFC) (Grant No. 51701052) and the Fundamental Research Funds for the Central Universities (Grant No. HIT.NSRIF.201801) are greatly acknowledged.

References

  1. 1.
    Mañosa L, Planes A (2017) Materials with giant mechanocaloric effects: cooling by strength. Adv Mater 29:1603607CrossRefGoogle Scholar
  2. 2.
    Qian S, Geng Y, Wang Y, Hwang Y (2016) A review of elastocaloric cooling materials, cycles and system integrations. Int J Refrig 64:1–19CrossRefGoogle Scholar
  3. 3.
    Mañosa L, Planes A (2016) Mechanocaloric effects in shape memory alloys. Phil Trans R Soc A 374:20150310CrossRefGoogle Scholar
  4. 4.
    Lu B, Liu J (2015) Mechanocaloric materials for solid-state cooling. Sci Bull 60:1638–1643CrossRefGoogle Scholar
  5. 5.
    Bonnot E, Romero R, Mañosa L, Vives E, Planes A (2008) Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys Rev Lett 100:125091CrossRefGoogle Scholar
  6. 6.
    Mañosa L, Planes A, Vives E, Bonnot E, Romero R (2009) The use of shape-memory alloys for mechanical refrigeration. Funct Mater Lett 02:73–78CrossRefGoogle Scholar
  7. 7.
    Vives E, Burrows S, Edwards RS, Dixon S, Mañosa L et al (2011) Temperature contour maps at the strain-induced martensitic transition of a Cu–Zn–Al shape-memory single crystal. Appl Phys Lett 98:11902CrossRefGoogle Scholar
  8. 8.
    Cui J, Wu Y, Muehlbauer J, Hwang Y, Radermacher R et al (2012) Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl Phys Lett 101:73904CrossRefGoogle Scholar
  9. 9.
    Ossmer H, Lambrecht F, Gültig M, Chluba C, Quandt E, Kohl M (2014) Evolution of temperature profiles in TiNi films for elastocaloric cooling. Acta Mater 81:9–20CrossRefGoogle Scholar
  10. 10.
    Tušek J, Engelbrecht K, Mikkelsen LP, Pryds N (2015) Elastocaloric effect of Ni–Ti wire for application in a cooling device. J Appl Phys 117:10–19Google Scholar
  11. 11.
    Schmidt M, Ullrich J (2015) Thermal stabilization of NiTiCuV shape memory alloys observations during elastocaloric training. Shape Mem Superelast 1:132–141CrossRefGoogle Scholar
  12. 12.
    Ossmer H, Chluba C, Kauffmann-Weiss S (2016) TiNi-based films for elastocaloric microcooling—fatigue life and device performance. APL Mater 4:064102CrossRefGoogle Scholar
  13. 13.
    Soto-Parra D, Mañosa EVL (2016) Elastocaloric effect in Ti–Ni shape-memory wire associated with the B2 ↔ B19′ and B2 ↔ R structural transitions. Appl Phys Lett 108:071902CrossRefGoogle Scholar
  14. 14.
    Shen A, Zhao D, Sun W, Liu J, Li C (2017) Elastocaloric effect in a Co50Ni20Ga30 single crystal. Scripta Mater 127:1–5CrossRefGoogle Scholar
  15. 15.
    Xiao F, Liang X, Jin X, Nie Z, Kakeshita T, Fukuda T (2016) Stable elastocaloric effect under tensile stress of iron-palladium alloy and its in situ X-ray observation. Acta Mater 118:88–94CrossRefGoogle Scholar
  16. 16.
    Xiao F, Fukuda T, Kakeshita T (2013) Significant elastocaloric effect in a Fe–31.2Pd (at.%) single crystal. Appl Phys Lett 102:4494Google Scholar
  17. 17.
    Castillo-Villa PO, Mañosa L, Planes A, Soto-Parra DE, Sánchez-Llamazares JL et al (2013) Elastocaloric and magnetocaloric effects in Ni–Mn–Sn(Cu) shape-memory alloy. J Appl Phys 113:53506CrossRefGoogle Scholar
  18. 18.
    Millán-Solsona R, Stern-Taulats E, Vives E, Planes A, Sharma J et al (2014) Large entropy change associated with the elastocaloric effect in polycrystalline Ni–Mn–Sb–Co magnetic shape memory alloys. Appl Phys Lett 105:241901CrossRefGoogle Scholar
  19. 19.
    Lu B, Xiao F, Yan A, Liu J (2014) Elastocaloric effect in a textured polycrystalline Ni–Mn–In–Co metamagnetic shape memory alloy. Appl Phys Lett 105:439Google Scholar
  20. 20.
    Huang C, Wang Y, Tang Z, Liao X, Yang S, Song X (2015) Influence of atomic ordering on elastocaloric and magnetocaloric effects of a Ni–Cu–Mn–Ga ferromagnetic shape memory alloy. J Alloy Compd 630:244–249CrossRefGoogle Scholar
  21. 21.
    Álvarez-Alonso P, Aguilar-Ortiz CO, Villa E, Nespoli A, Flores-Zúñiga H, Chernenko VA (2017) Conventional and inverse elastocaloric effect in Ni–Fe–Ga and Ni–Mn–Sn ribbons. Scripta Mater 128:36–40CrossRefGoogle Scholar
  22. 22.
    Shen Q, Zhao D, Sun W, Li Y, Liu J (2017) The effect of Tb on elastocaloric and mechanical properties of Ni–Mn–In–Tb alloys. J Alloy Compd 696:538–542CrossRefGoogle Scholar
  23. 23.
    Kainuma R, Takahashi S, Ishida K (1996) Thermoelastic martensite and shape memory effect in ductile Cu–AI–Mn alloys. Metall Mater Trans A 27:2187–2195CrossRefGoogle Scholar
  24. 24.
    Sutou Y, Omori T, Yamauchi K, Ono N, Kainuma R, Ishida K (2005) Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire. Acta Mater 53:4121–4133CrossRefGoogle Scholar
  25. 25.
    Sutou Y, Omori T, Kainuma R, Ishida K (2008) Ductile Cu–Al–Mn based shape memory alloys: general properties and applications. Mater Sci Technol 24:896–901CrossRefGoogle Scholar
  26. 26.
    Sutou Y, Koeda N, Omori T, Kainuma R, Ishida K (2009) Effects of ageing on bainitic and thermally induced martensitic transformations in ductile Cu–Al-Mn-based shape memory alloys. Acta Mater 57:5748–5758CrossRefGoogle Scholar
  27. 27.
    Sutou Y, Omori T, Kainuma R, Ishida K (2013) Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets. Acta Mater 61:3842–3850CrossRefGoogle Scholar
  28. 28.
    Liu J, Huang H, Xie J (2014) The roles of grain orientation and grain boundary characteristics in the enhanced superelasticity of Cu71.8Al17.8Mn10.4 shape memory alloys. Mater Des 64:427–433CrossRefGoogle Scholar
  29. 29.
    Xu S, Huang H, Xie J, Takekawa S, Xu X et al (2016) Giant elastocaloric effect covering wide temperature range in columnar-grained Cu71.5Al17.5Mn11 shape memory alloy. APL Mater 4:106106CrossRefGoogle Scholar
  30. 30.
    Liu J, Chen ZH, Huang H, Xie J (2017) Microstructure and superelasticity control by rolling and heat treatment in columnar-grained Cu–Al–Mn shape memory alloy. Mater Sci Eng, A 696:315–322CrossRefGoogle Scholar
  31. 31.
    Liu J, Huang H, Xie J, Xu S, Li F (2017) Superelastic fatigue of columnar-grained Cu–Al–Mn shape memory alloy under cyclic tension at high strain. Scripta Mater 136:106–110CrossRefGoogle Scholar
  32. 32.
    Niitsu K, Kimura Y, Omori T, Kainuma R (2018) Cryogenic superelasticity with large elastocaloric effect. NPG Asia Mater 10:e457CrossRefGoogle Scholar
  33. 33.
    Qian S, Geng Y, Wang Y, Pillsbury TE, Hada Y et al (2016) Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression. Philos Trans Ser A 374:20150309CrossRefGoogle Scholar
  34. 34.
    Chen Y, Schuh CA (2011) Size effects in shape memory alloy microwires. Acta Mater 59:537–553CrossRefGoogle Scholar
  35. 35.
    Chen Y, Zhang XX, Dunand D, Schuh C (2009) Shape memory and superelasticity in polycrystalline Cu–Al–Ni microwires. Appl Phys Lett 95:25Google Scholar
  36. 36.
    Ueland SM, Schuh CA (2012) Superelasticity and fatigue in oligocrystalline shape memory alloy microwires. Acta Mater 60:282–292CrossRefGoogle Scholar
  37. 37.
    Ueland SM, Schuh CA (2013) Transition from many domain to single domain martensite morphology in small-scale shape memory alloys. Acta Mater 61:5618–5625CrossRefGoogle Scholar
  38. 38.
    Ueland SM, Schuh CA (2014) Surface roughness-controlled superelastic hysteresis in shape memory microwires. Scripta Mater 82:1–4CrossRefGoogle Scholar
  39. 39.
    Qian MF, Zhang XX, Wei LS, Martin PG, Sun JF et al (2016) Microstructural evolution of Ni–Mn–Ga microwires during the melt-extraction process. J Alloy Compd 660:244–251CrossRefGoogle Scholar
  40. 40.
    Zhang XX, Miao SP, Sun JF (2014) Magnetocaloric effect in Ni–Mn–In–Co microwires prepared by Taylor–Ulitovsky method. Trans Nonferrous Met Soc 24:3152–3157CrossRefGoogle Scholar
  41. 41.
    Chen Y, Schuh CA (2011) Size effects in shape memory alloy microwires. Acta Mater 59:537–553CrossRefGoogle Scholar
  42. 42.
    Donald IW, Metcalfe BL (1996) The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process. J Mater Sci 31:1139–1149.  https://doi.org/10.1007/BF00353092 CrossRefGoogle Scholar
  43. 43.
    Xie J, Liu J, Huang H (2015) Structure design of high-performance Cu-based shape memory alloys. Rare Met 346:07–24Google Scholar
  44. 44.
    Sutou Y, Omori T, Kainuma R, Ono N, Ishida K (2002) Enhancement of superelasticity in Cu–Al–Mn–Ni shape-memory alloys by texture control. Metall Mater Trans A 33:2817–2824CrossRefGoogle Scholar
  45. 45.
    Xu S, Huang H, Xie J, Kimura Y, Xu X et al (2017) Dynamic recovery and superelasticity of columnar-grained Cu–Al–Mn shape memory alloy. Metals 7:141CrossRefGoogle Scholar
  46. 46.
    Sutou Y, Omori T, Yamauchi K, Ono N, Kainuma R, Ishida K (2005) Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire. Acta Mater 53:4121–4133CrossRefGoogle Scholar
  47. 47.
    Gràcia-Condal A, Stern-Taulats E, Planes A, Vives E, Mañosa L (2018) The giant elastocaloric effect in a Cu–Zn–Al shape-memory alloy: a calorimetric study. Phys Status Solidi (b) 255:1700422CrossRefGoogle Scholar
  48. 48.
    Chauhan A, Patel S, Vaish R (2015) Elastocaloric effect in ferroelectric ceramics. Appl Phys Lett 106:172901CrossRefGoogle Scholar
  49. 49.
    Qu YH, Cong DY, Chen Z, Gui WY, Sun XM et al (2017) Large and reversible inverse magnetocaloric effect in Ni48.1Co2.9Mn35.0In14.0 metamagnetic shape memory microwire. Appl Phys Lett 111:192412CrossRefGoogle Scholar
  50. 50.
    Soto-Parra D, Vives E, Mañosa L, Matutes-Aquino JA, Flores-Zúñiga H, Planes A (2016) Elastocaloric effect in Ti–Ni shape-memory wires associated with the B2 ↔ B19′ and B2 ↔ R structural transitions. Appl Phys Lett 108:71902CrossRefGoogle Scholar
  51. 51.
    Mannosa L, Jarque-Farnos S, Vives E, Planes A (2013) Large temperature span and giant refrigerant capacity in elastocaloric Cu–Zn–Al shape memory alloys. Appl Phys Lett 103:211904CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations