Journal of Materials Science

, Volume 54, Issue 13, pp 9643–9655 | Cite as

Effect of RGO coating on lithium storage performance of monodispersed core–shell MoS2 superspheres

  • Feilong Gong
  • Lifang Peng
  • Mengmeng Liu
  • Erchao Meng
  • Feng LiEmail author
Energy materials


The effect of reduced graphene oxide coating on the electrochemical performance of monodispersed core–shell MoS2 spheres has been presented. The 3D nanoarchitectures constructed with 2D MoS2 and RGO nanosheets can be applied to assemble anodes with highly enhanced capacity in storing lithium. The amount of reduced graphene oxide nanosheets can dramatically affect the electrochemical properties of as-prepared 3D nanoarchitectures. Specifically, the MoS2 anode materials with ~ 7 wt% of reduced graphene oxide exhibit the highest average specific capacity of ~ 1134 mAh g−1 at 100 mA g−1, and it recovers up to 89.2% after performing discharge–charge at 2000 mA g−1. The discharge capacity of the electrode can retain ~ 88.9% of its second discharge capacity after cycling for 100 times at 200 mA g−1 and keep ~ 98.3% of its average Coulombic efficiency after the first cycle. The cells also possess high rate with specific capacity of ~ 739 mAh g−1 even at 1000 mA g−1.



This work was financially supported by Doctoral Foundation of Zhengzhou University of Light Industry (No. 13501050084) and National Natural Science Foundation of China (Grant Number 21371157).

Compliance with ethical standards

Conflict of interest

All authors listed have declared that they have no conflict of interest.

Supplementary material

10853_2019_3587_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1414 kb)


  1. 1.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  2. 2.
    Park SY, Baek WJ, Lee SY, Seo JA, Kang YS, Koh M, Kim SH (2018) Probing electrical degradation of cathode materials for lithium-ion batteries with nanoscale resolution. Nano Energy 49:1–6CrossRefGoogle Scholar
  3. 3.
    An Q, Lv F, Liu Q, Han C, Zhao K, Sheng J, Wei Q, Yan M, Mai L (2014) Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett 14:6250–6256CrossRefGoogle Scholar
  4. 4.
    Mahmood N, Zhang CZ, Liu F, Zhu JH, Hou YL (2013) Hybrid of Co3Sn2@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode. ACS Nano 7:10307–10318CrossRefGoogle Scholar
  5. 5.
    Liu Y, He X, Hanlon D, Harvey A, Coleman JN, Li Y (2016) Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 10:8821–8828CrossRefGoogle Scholar
  6. 6.
    David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770CrossRefGoogle Scholar
  7. 7.
    Shi ZT, Kang WP, Xu J, Sun YW, Jiang M, Ng TW, Xue HT, Yu DYW, Zhang WJ, Lee CS (2016) Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 22:27–37CrossRefGoogle Scholar
  8. 8.
    Shan TT, Xin S, You Y, Cong HP, Yu SH, Manthiram A (2016) Combining nitrogen-doped graphene sheets and MoS2: a unique film-foam-film structure for enhanced lithium storage. Angew Chem Int Ed 55:12783–12788CrossRefGoogle Scholar
  9. 9.
    Chen BA, Liu EZ, Cao TT, He F, Shi CS, He CN, Ma LY, Li QY, Li JJ, Zhao NQ (2017) Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: towards high-performance lithium-ion batteries anode materials. Nano Energy 33:247–256CrossRefGoogle Scholar
  10. 10.
    Li YF, Liang YL, Hernandez FCR, Yoo HD, An QY, Yao Y (2015) Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites. Nano Energy 15:453–461CrossRefGoogle Scholar
  11. 11.
    Wang B, Zhang Y, Zhang J, Xia R, Chu Y, Zhou J, Yang X, Huang J (2017) Facile synthesis of a MoS2 and functionalized graphene heterostructure for enhanced lithium-storage performance. ACS Appl Mater Interfaces 9:12907–12913CrossRefGoogle Scholar
  12. 12.
    Ejigu A, Kinloch IA, Prestat E, Dryfe RAW (2017) A simple electrochemical route to metallic phase trilayer MoS2: evaluation as electrocatalysts and supercapacitors. J Mater Chem A 5:11316–11330CrossRefGoogle Scholar
  13. 13.
    Loh KP, Zhang H, Chen WZ, Ji W (2006) Templated deposition of MoS2 nanotubules using single source precursor and studies of their optical limiting properties. J Phys Chem B 110:1235–1239CrossRefGoogle Scholar
  14. 14.
    Wang PP, Sun H, Ji Y, Li W, Wang X (2014) Three-dimensional assembly of single-layered MoS2. Adv Mater 26:964–969CrossRefGoogle Scholar
  15. 15.
    Chen YM, Yu XY, Li Z, Paik U, Lou XW (2016) Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Sci Adv 2:e1600021–e1600028CrossRefGoogle Scholar
  16. 16.
    Liu N, Kim P, Kim JH, Ye JH, Kim S, Lee CJ (2014) Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 8:6902–6910CrossRefGoogle Scholar
  17. 17.
    Chen B, Lu HH, Zhao NQ, Shi CS, Liu EZ, He CN, Ma LY (2018) Facile synthesis and electrochemical properties of continuous porous spheres assembled from defect-rich, interlayer-expanded, and few-layered MoS2/C nanosheets for reversible lithium storage. J Power Sources 387:16–23CrossRefGoogle Scholar
  18. 18.
    Zhao ZH, Hu XD, Wang HQ, Ye MY, Sang ZY, Ji HM, Li XL, Dai YJ (2018) Superelastic 3D few-layer MoS2/carbon framework heterogeneous electrodes for highly reversible sodium-ion batteries. Nano Energy 48:526–535CrossRefGoogle Scholar
  19. 19.
    Zhang S, Chowdari BVR, Wen Z, Jin J, Yang J (2015) Constructing highly oriented configuration by few-layer MoS2: toward high-performance lithium-ion batteries and hydrogen evolution reactions. ACS Nano 9:12464–12472CrossRefGoogle Scholar
  20. 20.
    Hu Z, Wang LX, Zhang K, Wang JB, Cheng FY, Tao ZL, Chen J (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed 53:12794–12798CrossRefGoogle Scholar
  21. 21.
    Ren WN, Zhou WW, Zhang HF, Cheng CW (2017) ALD TiO2-coated flower-like MoS2 nanosheets on carbon cloth as sodium ion battery anode with enhanced cycling stability and rate capability. ACS Appl Mater Interfaces 9:487–495CrossRefGoogle Scholar
  22. 22.
    Wang M, Li GD, Xu HY, Qian YT, Yang J (2013) Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl Mater Interfaces 5:1003–1008CrossRefGoogle Scholar
  23. 23.
    Yun Q, Lu Q, Zhang X, Tan C, Zhang H (2018) Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew Chem Int Ed 57:626–646CrossRefGoogle Scholar
  24. 24.
    Wang YW, Yu L, Lou XW (2016) Synthesis of highly uniform molybdenum-glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries. Angew Chem Int Ed 55:7423–7426CrossRefGoogle Scholar
  25. 25.
    Zhang L, Wu HB, Yan Y, Wang X, Lou XW (2014) Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Environ Sci 7:3302–3306CrossRefGoogle Scholar
  26. 26.
    Chen Y, Hu Y, Shen Z, Chen R, He X, Zhang X, Li Y, Wu K (2017) Hollow core-shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries. J Power Sources 342:467–475CrossRefGoogle Scholar
  27. 27.
    Zuo XX, Chang K, Zhao J, Xie ZZ, Tang HW, Li B, Chang ZR (2016) Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J Mater Chem A 4:51–58CrossRefGoogle Scholar
  28. 28.
    Zhou L, Zhuang Z, Zhao H, Lin M, Zhao D, Mai L (2017) Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv Mater 29:1602914–1602942CrossRefGoogle Scholar
  29. 29.
    Tan C, Luo Z, Chaturvedi A, Cai Y, Du Y, Gong Y, Huang Y, Lai Z, Zhang X, Zheng L, Qi X, Goh MH, Wang J, Han S, Wu XJ, Gu L, Kloc C, Zhang H (2018) Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv Mater 30:1602914–1602942Google Scholar
  30. 30.
    Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10:313–318CrossRefGoogle Scholar
  31. 31.
    Jiao YC, Mukhopadhyay A, Ma Y, Yang L, Hafez AM, Zhu HL (2018) Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries. Adv Energy Mater 8:91702779–91702787Google Scholar
  32. 32.
    Xiao Y, Cao Y, Gong Y, Zhang A, Zhao J, Fang S, Jia D, Li F (2014) Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn3O4 nanoparticles-graphene nanocomposites. J Power Sources 246:926–933CrossRefGoogle Scholar
  33. 33.
    Xiao Y, Liu S, Li F, Zhang A, Zhao J, Fang S, Jia D (2012) 3D hierarchical Co3O4 twin-Spheres with an urchin-Like structure: large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv Funct Mater 22:4052–4059CrossRefGoogle Scholar
  34. 34.
    Meng E, Zhang M, Hu Y, Gong F, Zhang L, Li F (2018) Solid-state attachments of Ag nanoparticles onto the surfaces of LiFePO4 cathode materials for Li storage with enhanced capabilities. Electrochim Acta 265:160–165CrossRefGoogle Scholar
  35. 35.
    Yan LJ, Luo NN, Kong WB, Luo S, Wu HC, Jiang KL, Li QQ, Fan SS, Duan WH, Wang JP (2018) Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. J Power Sources 389:169–177CrossRefGoogle Scholar
  36. 36.
    Zhang ZJ, Zhao HL, Teng YQ, Chang XW, Xia Q, Li ZL, Fang JJ, Du ZH, Swierczek K (2018) Carbon-sheathed MoS2 nanothorns epitaxially grown on CNTs: electrochemical application for highly stable and ultrafast lithium storage. Adv Energy Mater 8:1700174–1700184CrossRefGoogle Scholar
  37. 37.
    Sun D, Ye DL, Liu P, Tang YG, Guo J, Wang LZ, Wang HY (2018) MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv Energy Mater 8:1702383–1702393CrossRefGoogle Scholar
  38. 38.
    Xiong F, Cai Z, Qu L, Zhang P, Yuan Z, Asare OK, Xu W, Lin C, Mai L (2015) Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers: a stable anode for lithium-ion batteries. ACS Appl Mater Interfaces 7:12625–12630CrossRefGoogle Scholar
  39. 39.
    Liu G, Feng Y, Li Y, Qin M, An H, Hu W, Feng W (2015) Three-dimensional multilayer assemblies of MoS2/reduced graphene oxide for high-performance lithium ion batteries. Part Part Syst Char 32:489–497CrossRefGoogle Scholar
  40. 40.
    Wang HY, Jiang H, Hu YJ, Li N, Zhao XJ, Li CZ (2017) 2D MoS2/polyaniline heterostructures with enlarged interlayer spacing for superior lithium and sodium storage. J Mater Chem A 5:5383–5389CrossRefGoogle Scholar
  41. 41.
    Yang LC, Wang SN, Mao JJ, Deng JW, Gao QS, Tang Y, Schmidt OG (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25:1180–1184CrossRefGoogle Scholar
  42. 42.
    Liu QH, Huo J, Ma ZL, Wu ZJ, Wang SY (2016) In-situ formation of Ni3S2 interlayer between MoS2 and Ni foam for high-rate and highly-durable lithium ion batteries. Electrochim Acta 206:52–60CrossRefGoogle Scholar
  43. 43.
    Chang K, Chen W (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728CrossRefGoogle Scholar
  44. 44.
    Hu L, Ren Y, Yang H, Xu Q (2014) Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-Ion battery applications. ACS Appl Mater Interfaces 6:14644–14652CrossRefGoogle Scholar
  45. 45.
    Li F, Ding Y, Gao PXX, Xin XQ, Wang ZL (2004) Single-cystal hexagonal disks and rings of ZnO: low-temperature, large-scale synthesis and growth mechanism. Angew Chem Int Ed 43:5238–5242CrossRefGoogle Scholar
  46. 46.
    Li F, Gong F, Xiao Y, Zhang A, Zhao J, Fang S, Jia D (2013) ZnO twin-spheres exposed in ± (001) facets: stepwise self-assembly growth and anisotropic blue emission. ACS Nano 7:10482–10491CrossRefGoogle Scholar
  47. 47.
    Gong F, Peng L, Zhang Y, Cao Y, Jia D, Li F (2018) Selectively sensing H2S and acetone through tailoring the facets exposed on the surfaces of ZnO supercrystals. Mater Lett 218:106–109CrossRefGoogle Scholar
  48. 48.
    Gong F, Peng L, Liu H, Zhang Y, Jia D, Fang S, Li F, Li D (2018) 3D core–shell MoS2 superspheres composed of oriented nanosheets with quasi molecular superlattices: mimicked embryo formation and Li-storage properties. J Mater Chem A 6:18498–18507CrossRefGoogle Scholar
  49. 49.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRefGoogle Scholar
  50. 50.
    Cao Y, Xiao Y, Gong Y, Wang C, Li F (2014) One-pot synthesis of MnOOH nanorods on graphene for asymmetric supercapacitors. Electrochim Acta 127:200–207CrossRefGoogle Scholar
  51. 51.
    Wang S, Wang R, Zhao Q, Ren L, Wen J, Chang J, Fang X, Hu N, Xu C (2019) Freeze-drying induced self-assembly approach for scalable constructing MoS2/graphene hybrid aerogels for lithium-ion batteries. J Colloid Interface Sci 544:37–45CrossRefGoogle Scholar
  52. 52.
    Dong Y, Jiang H, Deng Z, Hu Y, Li C (2018) Synthesis and assembly of three-dimensional MoS2/rGO nanovesicles for high-performance lithium storage. Chem Eng J 350:1066–1072CrossRefGoogle Scholar
  53. 53.
    Wang J, Tian J, Naren Wang X, Qin Z, Shan Z (2018) Synthesis of MoS2 and graphene composites as the anode materials for Li-ion batteries. Energy Technol 6:1913–1920CrossRefGoogle Scholar
  54. 54.
    Xue H, Wang J, Wang S, Muhammad S, Feng C, Wu Q, Li H, Shi D, Jiao Q, Zhao Y (2018) Core-shell MoS2@graphene composite microspheres as stable anodes for Li-ion batteries. New J Chem 42:15340–15345CrossRefGoogle Scholar
  55. 55.
    Ji H, Hu S, Shi S, Guo B, Hou W, Yang G (2018) Rapid microwave-hydrothermal preparation of few-layer MoS2/C nanocomposite as anode for highly reversible lithium storage properties. J Mater Sci 53:14548–14558. CrossRefGoogle Scholar
  56. 56.
    He W, Zheng X, Peng J, Zhang Q, Pei D, Yan X (2018) One-step solid-phase synthesis of binder-free molybdenum disulfide/carbon fibers paper anode for high-performance lithium-ion batteries. J Alloys Compd 768:33–41CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Surface and Interface Science and TechnologyZhengzhou University of Light IndustryZhengzhouPeople’s Republic of China
  2. 2.American Advanced NanotechnologyMissouri CityUSA

Personalised recommendations