Journal of Materials Science

, Volume 54, Issue 13, pp 9523–9532 | Cite as

Discovering new M-quinolate materials: theoretical insight into understanding the charge transport, electronic, self-aggregation properties in M-quinolate materials (M = Li, Na, K, Rb, Cs, Cu, Ag, and Au)

  • Sang Ho Jeon
  • Young Mi ChoEmail author
  • Taekyung KimEmail author
  • Sunwoo KangEmail author
Computation and theory


A series of M-quinolate complexes were theoretically investigated to understand the effect of metal ions on electronic and charge transport properties by employing density functional theory simulation. It was found that both electronic and carrier transport properties in M-quinolate materials significantly depend on singly oxidized metal ions. In particular, Csq apparently showed an excellent advantage over other M-quinolate materials (M = Li, Na, K, Rb, Cs, Cu, Ag, and Au) in terms of electron mobility and injection. In addition, the dimerization and vertical detachment energies of all M-quinolate materials were compared to understand self-aggregation effect on carrier transport. As a result, it is expected that Csq is not only likely to be present in dimer form, but also reduce the density of electron traps in electron transporting materials.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chien CH, Chen CK, Hsu FM, Hsu S, Chou PT, Lai CH (2009) Multifunctional deep-blue emitter comprising an anthracene core and terminal triphenylphosphine oxide groups. Adv Funct Mater 19:560–566. CrossRefGoogle Scholar
  2. 2.
    Xing X, Zhang L, Liu R, Li S, Qu CZ, Sun W, Xiao L, Gong Q (2012) A deep blue emitter with electron transporting property to improve charge balance for organic light-emitting device. Appl Mater Interface 4:2877–2880. CrossRefGoogle Scholar
  3. 3.
    Van-Slyke SA, Chen CH, Tang CW (1996) Organic electroluminescent devices with improved stability. Appl Phys Lett 69:2160–2162. CrossRefGoogle Scholar
  4. 4.
    Adachi C, Baldo MA, Forrest SR, Lamansky S, Thompson ME, Kwong RC (2001) High-efficiency red electrophosphorescence devices. Appl Phys Lett 78:1622–1624CrossRefGoogle Scholar
  5. 5.
    Baldo MA, Lamansky S, Burrows PE, Forrest SR, Thompson ME (1999) Very high efficiency green organic light-emitting devices based on electrophosphorescence. Appl Phys Lett 75:4–6. CrossRefGoogle Scholar
  6. 6.
    Barbara PF, Meyer TJ, Ratner MA (1996) Contemporary issues in electron transfer research. J Phys Chem 100:13148–13168. CrossRefGoogle Scholar
  7. 7.
    Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 63:599–610. CrossRefGoogle Scholar
  8. 8.
    Sharma A, Singh D, Makrandi JK, Kamalasanan MN, Shrivastva R, lshwar S (2007) Electroluminescent characteristics of OLEDs fabricated with bis(5,8-dichloro-8-hydroxyquinolinato)zinc(II) as light emitting material. Mater Lett 61:4614–4617. CrossRefGoogle Scholar
  9. 9.
    Sharma A, Singh D, Makrandi JK, Kamalasanan MN, Shrivastva R, lshwar S (2008) Fabrication and characterization of OLED with Mg complex of 5-chloro-8-hydroxyquinoline as emission layer. Mater Chem Phys 108:179–183. CrossRefGoogle Scholar
  10. 10.
    Singh D, Bhagwan S, Saini RK, Tanwar V, Nishal V (2016) Optoelectronic properties of color-tunable mixed ligand-based light-emitting zinc complexes. J Electron Mater 45:4865–4874. CrossRefGoogle Scholar
  11. 11.
    Monzon LMA, Burke F, Coey JMD (2011) Optical, magnetic, electrochemical, and electrical properties of 8-hydroxyquinoline-based complexes with Al3+, Cr3+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+. J Phys Chem C 115:9182–9192. CrossRefGoogle Scholar
  12. 12.
    Yuan H, Jiang F, Xie W, Zhang X, Pang Z, Han S (2015) Structural, electronic and magnetic properties of 8-hydroxyquinoline-based small molecules TMQx (TM = Cr, Mn, Fe Co, Ni, Cu, Zn, and x = 2 or 3). Physica E 70:77–83. CrossRefGoogle Scholar
  13. 13.
    Endo J, Matsumoto T, Kido J (2002) Organic electroluminescent devices having metal complexes as cathode interface layer. Jpn J Appl Phys 41:L800–L803. CrossRefGoogle Scholar
  14. 14.
    Lee J, Park Y, Kim DY, Chu HY, Lee H, Do LM (2003) High efficiency organic light emitting devices with Al/NaF cathode. Appl Phys Lett 82:173–175. CrossRefGoogle Scholar
  15. 15.
    Kido J, Mizukami T, Endoh J, Mori K (2002) Organic electroluminescent device. US Patent 6,396,209 B1Google Scholar
  16. 16.
    Schmitz C, Schmidt H, Thelakkat M (2000) Lithium-quinolate complexes as emitter and interface materials in organic light-emitting diodes. Chem Mater 12:3012–3019. CrossRefGoogle Scholar
  17. 17.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision A.1. Gaussian Inc. Wallingford, CTGoogle Scholar
  18. 18.
    Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chem Acc 44:129–138. CrossRefGoogle Scholar
  19. 19.
    Cornil J, Bredas JL, Zaumseil J, Sirringhaus H (2007) Ambipolar transport in organic conjugated materials. Adv Mater 18:1791–1799. CrossRefGoogle Scholar
  20. 20.
    Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu denEinzelnen Elektronen Eines Atoms. Physica 1:104–113. CrossRefGoogle Scholar
  21. 21.
    Kang S, Karthikeyan S, Lee JY (2013) Enhancement of the hydrogen storage capacity of Mg(AlH4)2 by excess electrons: a DFT study. Phys Chem Chem Phys 15:1216–1221. CrossRefGoogle Scholar
  22. 22.
    Yan S, Lee JY (2009) Excess electrons in LiAlH4 clusters: implication for hydrogen storage. J Phys Chem C 113:1104–1108. CrossRefGoogle Scholar
  23. 23.
    Kim T, Lee KH, Lee JY (2018) Superb lifetime of blue organic light-emitting diodes through engineering interface carrier blocking layers and adjusting electron leakage and an unusual efficiency variation at low electric field. J Mater Chem C 6:8472–8478. CrossRefGoogle Scholar
  24. 24.
    Pasatoiu TD, Madalan AM, Kumke MU, Tiseanu C, Andruh M (2010) Temperature switch of LMCT role: from quenching to sensitization of Europium emission in a ZnII-EuIII binuclear complex. Inorg Chem 49:2310–2315. CrossRefGoogle Scholar
  25. 25.
    Zhang G, Kim G, Choi W (2014) Visible light driven photocatalysis mediated via ligand to-metal charge transfer (LMCT): alternative way of solar activation of titania. Energy Environ Sci 7:954–966. CrossRefGoogle Scholar
  26. 26.
    Zhong K, Zhou X, Hou R, Zhou P, Hou S, Bian Y, Zhang G, Tang L, Shang X (2014) A water-soluble highly sensitive and selective fluorescent sensor for Hg2+ based on 2-(2-(8-hydroxyquinolin)-yl)benzimidazole via ligand to metal charge transfer (LMCT). RSC Adv 4:16612–16617. CrossRefGoogle Scholar
  27. 27.
    Brown-Xu SE, Chisholm MH, Durr CB, Lewis SA, Naseri V, Spilker TF (2013) MM quadruple bonds supported by cyanoacrylate ligands. Extending photon harvesting into the near infrared and studies of the MLCT states. Chem Sci 4:2105–2116. CrossRefGoogle Scholar
  28. 28.
    Lee SJ, Park JS, Song M, Shin I, Kim YI, Lee JW, Kang JW, Kang S, Lee JY, Jung SH, Kim HS, Chae MY, Jin SH (2009) Synthesis and characterization of red emitting iridium (III) complexes for solution-processable phosphorescent organic light-emitting diodes. Adv Funct Mater 19:2205–2212. CrossRefGoogle Scholar
  29. 29.
    Mccusker CE, Castellano FN (2013) Orange-to-blue and red-to green photon up conversion with a broadband absorbing copper(I) MLCT sensitizer. Chem Commun 49:3537–3539. CrossRefGoogle Scholar
  30. 30.
    Hunter CA, Sanders JK (1990) The nature of π–π interactions. J Am Chem Soc 122:5525–5534. CrossRefGoogle Scholar
  31. 31.
    Parent AA, Ess DH, Katzenellenbogen JA (2014) π–π interaction energies as determinants of the photodimerization of mono-, di-, and triazastibenes. J Org Chem 79:5448–5462. CrossRefGoogle Scholar
  32. 32.
    Karthikeyan S, Lee HM, Kim KS (2010) Structure, stabilities, thermodynamic properties, and IR spectra of acetylene cluster (C2H2)n = 2–5. J Chem Theory Comput 6:3190–3197. CrossRefGoogle Scholar
  33. 33.
    Mishra BK, Deshmukh MM, Venkatnarayan R (2014) C–H… π interactions and the nature of the donor carbon atom. J Org Chem 79:8599–8606. CrossRefGoogle Scholar
  34. 34.
    Pyykkö P, Li J, Runeberg N (1994) Predicted ligand dependence of the Au(I)…Au(I) attraction in (XAuPH3)2. Chem Phys Lett 218:133–138. CrossRefGoogle Scholar
  35. 35.
    Pyykkö P, Zhao Y (1991) Ab initio calculations on the (ClAuPH3)2 dimer with relativistic pseudopotential: is the “aurophilic attraction” a correlation effect? Angew Chem Int Edit 30:604–605. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Display Research CenterYonginSouth Korea
  2. 2.Department of Materials Science and EngineeringHongik UniversitySejongsiSouth Korea

Personalised recommendations