Journal of Materials Science

, Volume 54, Issue 13, pp 9679–9688 | Cite as

High sensitivity detection of human serum albumin using a novel magnetoelastic immunosensor

  • Rong Liu
  • Xing Guo
  • Jingzhe Wang
  • Jinyu Guo
  • Yixia Zhang
  • Wendong Zhang
  • Shengbo SangEmail author
Materials for life sciences


In this paper, a novel and wireless magnetoelastic (ME) immunosensor for human serum albumin (HSA) detection is presented. Gold nanoparticles layer on the sensor surface can enhance its biocompatibility, stability and sensitivity. The anti-HSA IgG, as a capture probe, was immobilized on the gold-plated ME sensor surface to specifically recognize the target HSA. The binding complex accumulated on the immunosensor surface leads to a decrease in the immunosensor’s resonance frequency, corresponding to the HSA concentrations. The atomic force microscopy, the Raman spectrum and the X-ray electron spectroscopy were used to confirm that the antibody immobilization was successful. Furthermore, to enhance its sensitivity, the working concentration of the antibody was optimized to be 25 µg ml−1. The experimental results demonstrated that the immunosensor exhibited a linear response to the logarithm of HSA concentrations ranging from 0.01 to 100 µg ml−1, with the sensitivity of 9.3 Hz/μg ml−1 and the detection limit of 0.01 µg ml−1, which is significantly lower than the minimum diagnosis limit of urine microalbumin.



The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 51622507, 61471255, 61474079, 61501316, 51505324).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2019_3554_MOESM1_ESM.docx (548 kb)
Supplementary material 1 (DOCX 548 kb)


  1. 1.
    Kragh-Hansen U, Chuang VT, Otagiri M (2002) Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull 25:695–704CrossRefGoogle Scholar
  2. 2.
    Maciążek-Jurczyk M, Szkudlarek A, Chudzik M, Pożycka J, Sułkowska A (2017) Alteration of human serum albumin binding properties induced by modifications: a review. Spectrochim Acta Part A Mol Biomol Spectrosc 188:675–683CrossRefGoogle Scholar
  3. 3.
    Li P, Wang Y, Zhang S, Xu L, Wang G, Cui J (2018) An ultrasensitive rapid-response fluorescent probe for highly selective detection of HSA. Tetrahedron Lett 59:1390–1393CrossRefGoogle Scholar
  4. 4.
    Gama-Axelsson T, Heimbürger O, Stenvinkel P, Bárány P, Lindholm B, Qureshi AR (2012) Serum albumin as predictor of nutritional status in patients with ESRD. Clin J Am Soc Nephrol 7:1446–1453CrossRefGoogle Scholar
  5. 5.
    Riella MC (2013) Kidney disease: improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3:1–150CrossRefGoogle Scholar
  6. 6.
    Friedman AN, Fadem SZ (2010) Reassessment of albumin as a nutritional marker in kidney disease. J Am Soc Nephrol 21:223–230CrossRefGoogle Scholar
  7. 7.
    Qaseem A, Wilt T, Denberg TD (2014) Screening, monitoring, and treatment of stage 1 to 3 chronic kidney disease. Ann Intern Med 161:82–84CrossRefGoogle Scholar
  8. 8.
    Bachmann LM, Nilsson G, Bruns DE et al (2014) State of the art for measurement of urine albumin: comparison of routine measurement procedures to isotope dilution tandem mass spectrometry. Clin Chem 60:471–480CrossRefGoogle Scholar
  9. 9.
    Shephard MD, Whiting MJ (1992) Nephelometric determination of total protein in cerebrospinal fluid and urine using benzalkonium chloride as precipitation reagent. Ann Clin Biochem 29(Pt 4):411–417CrossRefGoogle Scholar
  10. 10.
    Guobing X, Lili J, Lihua Z, Tiean X (2001) Application of an improved biuret method to the determination of total protein in urine and cerebrospinal fluid without concentration step by use of Hitachi 7170 auto-analyzer. J Clin Lab Anal 15:161–164CrossRefGoogle Scholar
  11. 11.
    Mondino A, Bongiovanni G, Fumero S, Rossi L (1972) An improved method of plasma deproteination with sulphosalicylic acid for determining amino acids and related compounds. J Chromatogr 74:255–263CrossRefGoogle Scholar
  12. 12.
    Lubran MM (1978) The measurement of total serum proteins by the Biuret method. Ann Clin Lab Sci 8:106–110Google Scholar
  13. 13.
    Burenin AG, Urusov AE, Betin AV et al (2015) Direct immunosensing by spectral correlation interferometry: assay characteristics versus antibody immobilization chemistry. Anal Bioanal Chem 407:3955–3964CrossRefGoogle Scholar
  14. 14.
    Guo X, Gao S, Sang S et al (2016) Detection system based on magnetoelastic sensor for classical swine fever virus. Biosens Bioelectron 82:127–131CrossRefGoogle Scholar
  15. 15.
    Guo X, Sang S, Jian A et al (2018) A bovine serum albumin-coated magnetoelastic biosensor for the wireless detection of heavy metal ions. Sens Actuators B Chem 256:318–324CrossRefGoogle Scholar
  16. 16.
    Gao X, Yang W, Pang P et al (2007) A wireless magnetoelastic biosensor for rapid detection of glucose concentrations in urine samples. Sens Actuators B Chem 128:161–167CrossRefGoogle Scholar
  17. 17.
    Pang P, Huang S, Cai Q, Yao S, Zeng K, Grimes C (2008) Detection of Pseudomonas aeruginosa using a wireless magnetoelastic sensing device. Biosens Bioelectron 23:295–299CrossRefGoogle Scholar
  18. 18.
    Lin H, Lu Q, Ge S, Cai Q, Grimes CA (2010) Detection of pathogen Escherichia coli O157:H7 with a wireless magnetoelastic-sensing device amplified by using chitosan-modified magnetic Fe3O4 nanoparticles. Sens Actuators B Chem 147:343–349CrossRefGoogle Scholar
  19. 19.
    Beltrami LVR, Kunst SR, Birriel EJ, Malfatti CFD (2017) Magnetoelastic biosensors: corrosion protection of an FeNiMoB alloy from alkoxide precursors. Thin Solid Films 624:83–94CrossRefGoogle Scholar
  20. 20.
    Lin H, Chen Z, Lu Q, Cai Q, Grimes CA (2010) A wireless and sensitive sensing detection of polycyclic aromatic hydrocarbons using humic acid-coated magnetic Fe3 O4 nanoparticles as signal-amplifying tags. Sens Actuators B Chem 146:154–159CrossRefGoogle Scholar
  21. 21.
    Chen L, Li J, Thanhthuy TT et al (2014) A wireless and sensitive detection of octachlorostyrene using modified AuNPs as signal-amplifying tags. Biosens Bioelectron 52:427–432CrossRefGoogle Scholar
  22. 22.
    Pang P, Zhang Y, Ge S, Cai Q, Yao S, Grimes CA (2009) Determination of glucose using bienzyme layered assembly magnetoelastic sensing device. Sens Actuators B Chem 136:310–314CrossRefGoogle Scholar
  23. 23.
    Menti C, Henriques JA, Missell FP, Roeschely M (2016) Antibody-based magneto-elastic biosensors: potential devices for detection of pathogens and associated toxins. Appl Microbiol Biotechnol 100:1–15CrossRefGoogle Scholar
  24. 24.
    Michota A, Kudelski A, Bukowska J (2002) Molecular structure of cysteamine monolayers on silver and gold substrates: comparative studies by surface-enhanced Raman scattering. Surf Sci 502:214–218CrossRefGoogle Scholar
  25. 25.
    Philippidis A, Papliaka ZE, Anglos D (2016) Surface Enhanced Raman and 2D-fluorescence spectroscopy for the investigation of amino acids and egg proteins. Microchem J 126:230–236CrossRefGoogle Scholar
  26. 26.
    Deb A, Pahan S, Dasgupta K et al (2018) Carbon nano tubes functionalized with novel functional group-amido-amine for sorption of actinides. J Hazard Mater 345:63–75CrossRefGoogle Scholar
  27. 27.
    Shi Q, Huang J, Sun Y et al (2017) Utilization of a lateral flow colloidal gold immunoassay strip based on surface-enhanced Raman spectroscopy for ultrasensitive detection of antibiotics in milk. Spectrochim Acta Part A Mol Biomol Spectrosc 197:107–113CrossRefGoogle Scholar
  28. 28.
    Chen D, Mei Y, Hu W, Li CM (2018) Electrochemically enhanced antibody immobilization on polydopamine thin film for sensitive surface plasmon resonance immunoassay. Talanta 182:470–475CrossRefGoogle Scholar
  29. 29.
    Caballero D, Martinez E, Bausells J, Errachid A, Samitier J (2012) Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface. Anal Chim Acta 720:43–48CrossRefGoogle Scholar
  30. 30.
    Lai LJ, Yang YW, Lin YK, Huang LL, Hsieh YH (2009) Surface characterization of immunosensor conjugated with gold nanoparticles based on cyclic voltammetry and X-ray photoelectron spectroscopy. Colloids Surf B Biointerfaces 68:130–135CrossRefGoogle Scholar
  31. 31.
    Osajima T, Suzuki M, Neya S, Hoshino T (2014) Computational and statistical study on the molecular interaction between antigen and antibody. J Mol Graph Model 53:128–139CrossRefGoogle Scholar
  32. 32.
    Makhneva E, Manakhov A, Skládal P, Zajíčková L (2016) Development of effective QCM biosensors by cyclopropylamine plasma polymerization and antibody immobilization using cross-linking reactions. Surf Coat Technol 290:116–123CrossRefGoogle Scholar
  33. 33.
    Saber R, Mutlu S, Pişkin E (2002) Glow-discharge treated piezoelectric quartz crystals as immunosensors for HSA detection. Biosens Bioelectron 17:727–734CrossRefGoogle Scholar
  34. 34.
    Tu MC, Chang YT, Kang YT, Chang HY, Chang P, Yew TR (2012) A quantum dot-based optical immunosensor for human serum albumin detection. Biosens Bioelectron 34:286–290CrossRefGoogle Scholar
  35. 35.
    Menti C, Beltrami M, Pozza MD et al (2017) Influence of antibody immobilization strategies on the analytical performance of a magneto-elastic immunosensor for Staphylococcus aureus detection. Mater Sci Eng C 76:1232–1239CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education and College of Information and ComputerTaiyuan University of TechnologyJinzhongChina
  2. 2.Institute of Applied Mechanics and National Demonstration Center for Experimental Mechanics EducationCollege of Mechanical and Vehicle Engineering of Taiyuan University of TechnologyJinzhongChina

Personalised recommendations