Advertisement

Journal of Materials Science

, Volume 54, Issue 13, pp 9887–9906 | Cite as

Analysis of microstructure formation in cast Zn alloys derived from computational thermodynamics of the Zn–Al–Cu–Mg system

  • Song-Mao LiangEmail author
  • Zhicheng Wu
  • Stefanie Sandlöbes
  • Sandra Korte-Kerzel
  • Rainer Schmid-Fetzer
Metals
  • 31 Downloads

Abstract

A self-consistent thermodynamic description of the Zn–Al–Cu–Mg quaternary alloy system is developed. The as-cast microstructures of key Zn–Al–Cu–Mg samples in the low-alloyed range are studied experimentally. These are interpreted by computational thermodynamic analysis applying both Scheil and equilibrium simulations. Contradictions concerning the variation of apparent fraction of primary (Zn) phase, the eutectic structure and visibly larger fractions of eutectoid structure with increasing Mg content can be resolved by these detailed calculations. Two series of dedicated experimental work found in this journal on as-cast microstructures of such quaternary Zn alloys in the high-alloyed range, including also thermal analysis data, were also analyzed. The viability of this computational thermodynamic approach is demonstrated by providing a detailed analysis going beyond the explanations and interpretations in the original publications. The coverage of a larger Zn alloy composition range suggests a predictive capability of this approach.

Notes

Acknowledgements

The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) within projects KO 4603/5-1 and SCHM 588/44-1.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kallien LH, Leis W (2011) Ageing of zinc alloys. Int Foundry Res 64:2–23Google Scholar
  2. 2.
    Yao C, Tay SL, Zhu T, Shang H, Gao W (2015) Effects of Mg content on microstructure and electrochemical properties of Zn–Al–Mg alloys. J Alloys Compd 645:131–136.  https://doi.org/10.1016/j.jallcom.2015.05.010 CrossRefGoogle Scholar
  3. 3.
    Wu Z, Sandlöbes S, Wang Y, Gibson JSKL, Korte-Kerzel S (2018) Creep behaviour of eutectic Zn–Al–Cu–Mg alloys. Mater Sci Eng A 724:80–94.  https://doi.org/10.1016/j.msea.2018.03.068 CrossRefGoogle Scholar
  4. 4.
    Wu Z, Sandlöbes S, Wu L, Hu W, Gottstein G, Korte-Kerzel S (2016) Mechanical behaviour of Zn–Al–Cu–Mg alloys: deformation mechanisms of as-cast microstructures. Mater Sci Eng A 651:675–687.  https://doi.org/10.1016/j.msea.2015.11.020 CrossRefGoogle Scholar
  5. 5.
    Peng X, Li Y, Liang X, Guo Q, Xu G, Peng Y, Yin Z (2018) Precipitate behavior and mechanical properties of enhanced solution treated Al–Zn–Mg–Cu alloy during non-isothermal ageing. J Alloys Compd 735:964–974.  https://doi.org/10.1016/j.jallcom.2017.11.178 CrossRefGoogle Scholar
  6. 6.
    Yu H, Wang M, Jia Y, Xiao Z, Chen C, Lei Q, Li Z, Chen W, Zhang H, Wang Y, Cai C (2014) High strength and large ductility in spray-deposited Al–Zn–Mg–Cu alloys. J Alloys Compd 601:120–125.  https://doi.org/10.1016/j.jallcom.2014.02.126 CrossRefGoogle Scholar
  7. 7.
    Wang J, Liu R, Luo T, Yang Y (2013) A high strength and ductility Mg–Zn–Al–Cu–Mn magnesium alloy. Mater Des 47:746–749.  https://doi.org/10.1016/j.matdes.2012.12.080 CrossRefGoogle Scholar
  8. 8.
    Zhu S, Luo T, Zhang T, Li Y, Yang Y (2017) Effects of Cu addition on the microstructure and mechanical properties of as-cast and heat treated Mg–6Zn–4Al magnesium alloy. Mater Sci Eng A 689:203–211.  https://doi.org/10.1016/j.msea.2017.02.061 CrossRefGoogle Scholar
  9. 9.
    Ansara I, Dinsdale AT, Rand MH (ed) (1998) COST 507: thermochemical database for light metal alloys. Volume 2: definition of thermodynamical and thermophysical properties to provide a database for the development of new light alloys. European Commission, Luxembourg. ISBN: 92-828-3902-8Google Scholar
  10. 10.
    Liang H (1998) Thermodynamic modeling and experimental investigation of the aluminum–copper–magnesium–zinc quaternary system. University of Wisconsin - Madison, MadisonGoogle Scholar
  11. 11.
    Liang P, Lukas HL (1998) System Al–Mg–Zn. In: Ansara I, Dinsdale AT, Rand MH (eds) COST 507: thermochemical database for light metal alloys. Volume 2: definition of thermodynamical and thermophysical properties to provide a database for the development of new light alloys. European Commission, Luxembourg, pp 329–332Google Scholar
  12. 12.
    Liang P, Tarfa T, Robinson JA, Wagner S, Ochin P, Harmelin MG, Seifert HJ, Lukas HL, Aldinger F (1998) Experimental investigation and thermodynamic calculation of the Al–Mg–Zn system. Thermochim Acta 314:87–110.  https://doi.org/10.1016/S0040-6031(97)00458-9 CrossRefGoogle Scholar
  13. 13.
    Liang P, Lukas HL (1998) System Cu–Mg–Zn. In: Ansara I, Dinsdale AT, Rand MH (eds) COST 507: thermochemical database for light metal alloys. Volume 2: definition of thermodynamical and thermophysical properties to provide a database for the development of new light alloys. European Commission, Luxembourg, pp 363–367Google Scholar
  14. 14.
    Liang P, Seifert HJ, Lukas HL, Ghosh G, Effenberg G, Aldinger F (1998) Thermodynamic modelling of the Cu–Mg–Zn ternary system. Calphad 22:527–544.  https://doi.org/10.1016/S0364-5916(99)00009-7 CrossRefGoogle Scholar
  15. 15.
    Bühler T (1998) System Al–Cu–Mg. In: Ansara I, Dinsdale AT, Rand MH (eds) COST 507: thermochemical database for light metal alloys. Volume 2: definition of thermodynamical and thermophysical properties to provide a database for the development of new light alloys. European Commission, Luxembourg, pp 311–314Google Scholar
  16. 16.
    Buhler T, Fries S, Spencer P, Lukas H (1998) A thermodynamic assessment of the Al–Cu–Mg ternary system. J Phase Equilib 19:317–333.  https://doi.org/10.1361/105497198770342058 CrossRefGoogle Scholar
  17. 17.
    Liang H, Chang YA (1998) A thermodynamic description for the Al–Cu–Zn system. J Phase Equilib 19:25–37.  https://doi.org/10.1361/105497198770342724 CrossRefGoogle Scholar
  18. 18.
    Liang H, Chen SL, Chang YA (1997) A thermodynamic description of the Al–Mg–Zn system. Metall Mater Trans A 28:1725–1734.  https://doi.org/10.1007/s11661-997-0104-8 CrossRefGoogle Scholar
  19. 19.
    Liang HY, Chang YA (1997) A thermodynamic description for the ternary Cu–Mg–Zn system. Z Metallkd 88:836–841Google Scholar
  20. 20.
    Chen SL, Zuo Y, Liang H, Chang YA (1997) A thermodynamic description for the ternary Al–Mg–Cu system. Metall Mater Trans A 28:435–446.  https://doi.org/10.1007/s11661-997-0144-0 CrossRefGoogle Scholar
  21. 21.
    Liang S-M, Hsiao H-M, Schmid-Fetzer R (2015) Thermodynamic assessment of the Al–Cu–Zn system, part I: Cu–Zn binary system. Calphad 51:224–232.  https://doi.org/10.1016/j.calphad.2015.09.010 CrossRefGoogle Scholar
  22. 22.
    Liang S-M, Schmid-Fetzer R (2015) Thermodynamic assessment of the Al–Cu–Zn system, part II: Al–Cu binary system. Calphad 51:252–260.  https://doi.org/10.1016/j.calphad.2015.10.004 CrossRefGoogle Scholar
  23. 23.
    Liang S-M, Schmid-Fetzer R (2016) Thermodynamic assessment of the Al–Cu–Zn system, Part III: Al–Cu–Zn ternary system. Calphad 52:21–37.  https://doi.org/10.1016/j.calphad.2015.11.001 CrossRefGoogle Scholar
  24. 24.
    Murray JL (2002) Thermodynamic modeling of the Al–Cu–Mg–Zn system in the aluminum corner. In: Turchi PEA, Gonis A, Shull RD (eds) CALPHAD and alloy thermodynamics. Min. Met. Mater. Soc., Warrendale, pp 165–175Google Scholar
  25. 25.
    Dinsdale AT (1991) SGTE data for pure elements. Calphad 15:317–425.  https://doi.org/10.1016/0364-5916(91)90030-N CrossRefGoogle Scholar
  26. 26.
    Schmid-Fetzer R, Hallstedt B (2012) Is zinc HCP_ZN or HCP_A3? Calphad 37:34–36.  https://doi.org/10.1016/j.calphad.2012.01.006 CrossRefGoogle Scholar
  27. 27.
    Mey SA (1993) Re-evaluation of the Al–Zn System. Z Metallkd 84:451–455Google Scholar
  28. 28.
    Saunders N (1998) System Al–Cu. In: Ansara I, Dinsdale AT, Rand MH (eds) COST 507: thermochemical database for light metal alloys. Volume 2: Definition of thermodynamical and thermophysical properties to provide a database for the development of new light alloys. European Commission, Luxemburg, pp 28–33Google Scholar
  29. 29.
    Cao W, Chen SL, Zhang F, Wu K, Yang Y, Chang YA, Schmid-Fetzer R, Oates WA (2009) PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad 33:328–342.  https://doi.org/10.1016/j.calphad.2008.08.004 CrossRefGoogle Scholar
  30. 30.
    Köster W (1948) The ternary system copper-zinc-magnesium. Z Metallkd 39:352–359 (German) Google Scholar
  31. 31.
    Yamada M, Matuki K (1972) A Study of the Zn-rich Corner of the Zn–Cu–Mg phase diagram. J Jpn Inst Met 36:278–285.  https://doi.org/10.2320/jinstmet1952.36.3_278 (Japanese) CrossRefGoogle Scholar
  32. 32.
    Scheil E (1942) Bemerkungen zur Schichtkristallbildung. Z Metallkd 34:70–72 (in German) Google Scholar
  33. 33.
    Schmid-Fetzer R (2014) Phase diagrams: the beginning of wisdom. J Phase Equilib Diffus 35:735–760.  https://doi.org/10.1007/s11669-014-0343-5 CrossRefGoogle Scholar
  34. 34.
    Liang S-M, Schmid-Fetzer R (2014) Phosphorus in Al–Si cast alloys: thermodynamic prediction of the AlP and eutectic (Si) solidification sequence validated by microstructure and nucleation undercooling data. Acta Mater 72:41–56.  https://doi.org/10.1016/j.actamat.2014.02.042 CrossRefGoogle Scholar
  35. 35.
    da Costa EM, da Costa CE, Vecchia FD, Rick C, Scherer M, dos Santos CA, Dedavid BA (2009) Study of the influence of copper and magnesium additions on the microstructure formation of Zn–Al hypoeutectic alloys. J Alloys Compd 488:89–99.  https://doi.org/10.1016/j.jallcom.2009.08.125 CrossRefGoogle Scholar
  36. 36.
    Jareño ED, Castro MJ, Maldonado SI, Hernández FA (2010) The effects of Cu and cooling rate on the fraction and distribution of epsilon phase in Zn–4Al–(3–5.6)Cu alloys. J Alloys Compd 490:524–530.  https://doi.org/10.1016/j.jallcom.2009.10.073 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of MetallurgyClausthal University of TechnologyClausthal-ZellerfeldGermany
  2. 2.Institute of Physical Metallurgy and Metal PhysicsRWTH Aachen UniversityAachenGermany

Personalised recommendations