Advertisement

Journal of Materials Science

, Volume 54, Issue 13, pp 9478–9496 | Cite as

Polylactic acid/sodium alginate/hydroxyapatite composite scaffolds with trabecular tissue morphology designed by a bone remodeling model using 3D printing

  • I. Fernández-Cervantes
  • M. A. MoralesEmail author
  • R. Agustín-Serrano
  • M. Cardenas-García
  • P. V. Pérez-Luna
  • B. L. Arroyo-Reyes
  • A. Maldonado-García
Composites
  • 40 Downloads

Abstract

The article presents a new methodology that employs 3D printing technology to generate a microporous composite material of polylactic acid, sodium alginate and hydroxyapatite, whose microstructure is designed by means of the 3D numerical solution from a mathematical model. This model represents the spatio-temporal dynamics of the interaction between osteoblasts and osteoclasts in the bone remodeling. The microporosity of composite material mimics the structure of human trabecular bone. This material has density with microporosity pretty close to the one that is exhibited by the natural bone tissue. Close relationship between the material processing and its elasticity module is observed. When subjecting this composite material to a simulated body fluid treatment, the mechanical resistance to compression is increased due to induced mineralization of hydroxyapatite crystals on its surface. The methodology shows potential to generate structures that allow the control of the composite material properties. The material presents a microporosity that has morphological and chemical properties suitable for future applications in tissue engineering as bone scaffold.

Notes

Acknowledgements

Funding was provided by Benemérita Universidad Autónoma de Puebla.

References

  1. 1.
    Jaffe M, Hammond W, Tolias P, Arinzeh T (2013) Characterization of biomaterials, 1st edn. Woodhead Publishing, OxfordCrossRefGoogle Scholar
  2. 2.
    Martin TJ, Ng KW (1994) Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem 56:357–366CrossRefGoogle Scholar
  3. 3.
    Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514CrossRefGoogle Scholar
  4. 4.
    Mouriño V, Boccaccini AR (2010) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 7:209–227CrossRefGoogle Scholar
  5. 5.
    Seitz H, Rieder W, Irsen S, Leukers B, Tille C (2005) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74:782–788CrossRefGoogle Scholar
  6. 6.
    Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA (2007) Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 28:2491–504CrossRefGoogle Scholar
  7. 7.
    Rezwan F, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRefGoogle Scholar
  8. 8.
    Muller B, Deyhle H, Fierz F (2009) Bio-mimetic hollow scaffolds for long bone replacement. Proc SPIE 7401:1–13Google Scholar
  9. 9.
    Sabir MI, Xu X, Li L (2009) A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci 44:5713–5724.  https://doi.org/10.1007/s10853-009-3770-7 CrossRefGoogle Scholar
  10. 10.
    Liu Y, Lim J, Teoh SH (2013) Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 31:688–705CrossRefGoogle Scholar
  11. 11.
    Hao Z, Song Z, Huang J, Huang K, Panetta A, Gu Z, Wu J (2017) The scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci 5:1382–1392CrossRefGoogle Scholar
  12. 12.
    Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743–765CrossRefGoogle Scholar
  13. 13.
    Velasco MA, Lancheros Y, Garzón-Alvarado DA (2016) Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction–diffusion models and manufactured with a material jetting system. J Comput Des Eng 3:385–397Google Scholar
  14. 14.
    Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRefGoogle Scholar
  15. 15.
    Xue W, Krishna BV, Bandyopadhyay A, Bose S (2007) Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater 3:1007–1018CrossRefGoogle Scholar
  16. 16.
    Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T (2006) Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27:5892–5900CrossRefGoogle Scholar
  17. 17.
    Stoppato M, Carletti E, Sidarovich V, Quattrone A, Unger RE, Kirkpatrick CJ, Migliaresi C, Motta A (2013) Influence of scaffold pore size on collagen I development: a new in vitro evaluation perspective. J Bioact Compat Polym 28:16–32CrossRefGoogle Scholar
  18. 18.
    Das K, Bose S, Bandyopadhyay A (2007) Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater 3:573–585CrossRefGoogle Scholar
  19. 19.
    Bodhak S, Bose S, Bandyopadhyay A (2009) Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite. Acta Biomater 5:2178–2188CrossRefGoogle Scholar
  20. 20.
    Tarafder S, Banerjee S, Bandyopadhyay A, Bose S (2010) Electrically polarized biphasic calcium phosphates: adsorption and release of bovine serum albumin. Langmuir 26:16625–16629CrossRefGoogle Scholar
  21. 21.
    Kucharska M, Butruk B, Walenko K, Brynk T, Ciach T (2012) Fabrication of in-situ foamed chitosan/ \({\beta }\)-TCP scaffolds for bone tissue engineering application. Mater Lett 85:124–127CrossRefGoogle Scholar
  22. 22.
    Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone 46:386–395CrossRefGoogle Scholar
  23. 23.
    Sultana N, Wang M (2008) Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds. J Mater Sci Mater Med 19:2555–2561CrossRefGoogle Scholar
  24. 24.
    Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRefGoogle Scholar
  25. 25.
    Yoshikawa H, Tamai N, Murase T, Myoui A (2009) Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J R Soc Interface 6:S341–S348CrossRefGoogle Scholar
  26. 26.
    Bose S, Suguira S, Bandyopadhyay A (1999) Processing of controlled porosity ceramic structures via fused deposition. Scr Mater 41:1009–1014CrossRefGoogle Scholar
  27. 27.
    Bose S, Darsell J, Kintner M, Hosick H, Bandyopadhyay A (2003) Pore size and pore volume effects on alumina and TCP ceramic scaffolds. Mater Sci Eng C 23:479–486CrossRefGoogle Scholar
  28. 28.
    Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  29. 29.
    Gantenbein S, Masania K, Woigk W, Sesseg JPW, Tervoort TA, Studart AR (2018) Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature 561:226–230CrossRefGoogle Scholar
  30. 30.
    Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034CrossRefGoogle Scholar
  31. 31.
    Komarova SV, Smith RJ, Dixon SJ, Sims SM, Wahl LM (2003) Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33:206–215CrossRefGoogle Scholar
  32. 32.
    Ayati BP, Edwards CM, Webb GF, Wikswo JP (2010) A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biol Direct 5:1–17CrossRefGoogle Scholar
  33. 33.
    Felfel RM, Poocza L, Gimeno-Fabra M, Milde T, Hildebrand G, Ahmed I, Scotchford C, Sottile V, Grant DM, Liefeith K (2016) In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization. Biomed Mater 11:1–14CrossRefGoogle Scholar
  34. 34.
    Zhu Y, Wan Y, Zhang J, Yin D, Cheng W (2014) Manufacture of layered collagen/chitosan-polycaprolactone scaffolds with biomimetic microarchitecture. Colloids Surf B Biointerfaces 113:352–356CrossRefGoogle Scholar
  35. 35.
    Jang IG, Kim IY (2008) Computational study of Wolffs law with trabecular architecture in the human proximal femur using topology optimization. J Biomech 41:2353–2361CrossRefGoogle Scholar
  36. 36.
    Tsubota K, Suzuki Y, Yamada T, Hojo M, Makinouchi A, Adachi T (2009) Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: approach to understanding Wolffs law. J Biomech 42:1088–1094CrossRefGoogle Scholar
  37. 37.
    Boyle C, Kim IY (2011) Three-dimensional micro-level computational study of Wolffs law via trabecular bone remodeling in the human proximal femur using design space topology optimization. J Biomech 44:935–942CrossRefGoogle Scholar
  38. 38.
    Saber-Samandari S, Saber-Samandari S, Kiyazar S, Aghazadeh J, Sadeghi A (2016) In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 86:434–442CrossRefGoogle Scholar
  39. 39.
    Vinceković M, Jalśenjak N, Topolovec-Pintarić S, Dermić E, Bujan M, Jurić S (2016) Encapsulation of biological and chemical agents for plant nutrition and protection: chitosan/alginate microcapsules loaded with copper cations and trichoderma viride. J Agric Food Chem 64:8073–8083CrossRefGoogle Scholar
  40. 40.
    Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62:600–612CrossRefGoogle Scholar
  41. 41.
    Bett JAS, Christner LG, Hall WK (1967) Hydrogen held by solids. XII. Hydroxyapatite catalysts. J Am Chem Soc 89:5535–5541CrossRefGoogle Scholar
  42. 42.
    Sibeko B, Choonara YE, du Toit LC, Modi G, Naidoo D, Khan RA, Kumar P, Ndesendo VMK, Iyuke SE, Pillay V (2012) Composite polylactic-methacrylic acid copolymer nanoparticles for the delivery of methotrexate. J Drug Deliv 2012:1–18CrossRefGoogle Scholar
  43. 43.
    Kanasan N, Adzila S, Suid MS, Gurubaran P (2016) Preparation and characterization of hydroxyapatite/sodium alginate biocomposites for bone implant application. In: AIP conference proceedings 1756:020006-1 to 020006-1Google Scholar
  44. 44.
    Antebi B, Cheng X, Harris JN, Gower LB, Chen X-D, Ling J (2013) Biomimetic collagen hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique. Tissue Eng Part C Methods 19:487–496CrossRefGoogle Scholar
  45. 45.
    Fonseca J (2012) Bone biology: from macrostructure to gene expression. Medicographia 34:142–148Google Scholar
  46. 46.
    Norman J, Shapter JG, Short K, Smith LJ, Fazzalari NL (2008) Micromechanical properties of human trabecular bone: a hierarchical investigation using nanoindentation. J Biomed Mater Res A 87A:196–202CrossRefGoogle Scholar
  47. 47.
    Hing KA (2004) Bone repair in the twenty-first century: biology, chemistry or engineering? Philos. Trans A Math Phys Eng Sci 362:2821–2850CrossRefGoogle Scholar
  48. 48.
    Wagoner-Johnson AJ, Herschler BA (2011) A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 7:16–30CrossRefGoogle Scholar
  49. 49.
    Brundavanam RK, Poinern GEJ, Fawcett D (2013) Modelling the crystal structure of a 30 nm sized particle based hydroxyapatite powder synthesised under the influence of ultrasound irradiation from X-ray powder diffraction data. Am J Mater Sci 3:84–90Google Scholar
  50. 50.
    Maciel A, Presbtero G, Pia C, del Pilar Gutiérrez M, Guzmán J, Munguía N (2015) Pore cross-section area on predicting elastic properties of trabecular bovine bone for human implants. Biomed Mater Eng 25:9–23Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de Ingeniería QuímicaBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Facultad de Ciencias Fisico-MatemáticasBenemérita Universidad Autónoma de PueblaPueblaMexico
  3. 3.Facultad de MedicinaBenemérita Universidad Autónoma de PueblaPueblaMexico
  4. 4.Instituto de Ciencias de la BUAPBenemérita Universidad Autónoma de PueblaPueblaMexico
  5. 5.Universidad Aeronáutica en Querétaro, Subdirección de Técnico Superior UniversitarioColónMexico

Personalised recommendations