Advertisement

Journal of Materials Science

, Volume 54, Issue 13, pp 9603–9612 | Cite as

Composite solid electrolyte PEO/SN/LiAlO2 for a solid-state lithium battery

  • Nan Zhang
  • Jianwei He
  • Wenmiao Han
  • Yadong WangEmail author
Energy materials
  • 66 Downloads

Abstract

Lithium aluminate (LAO) is known to be an effective filler for improving the conductivity of polyethylene–LiX (PEO–LiX) solid polymer electrolytes (SPEs), while succinonitrile (SN) is an excellent solid plasticizer with plastic crystalline organic molecules. In this work, LAO micro-rods are prepared via a simple hydrothermal method, and a novel PEO-based composite polymer electrolyte is developed by the addition of SN and LAO. The resulting optimal composite PEO:LiTFSI:SN(15%):LAO(10%) (PEOL-SPE) has a maximized ionic conductivity of 1.36 × 10−5 S·cm−1at 30 °C, and the membrane has a wide electrochemical window of 5.2 V. The fabricated cell with LiFePO4 as the cathode, metallic lithium as the anode and PEOL-SPE as the electrolyte membrane delivers an impressive initial charge/discharge capacity of 153.1/141.3 mAh g−1 at 60 °C. The addition of 10 wt% of the LAO micro-rods results in a favorable increase in the ionic conductivity, and no apparent blocking effect is observed to impede the electrochemical performance. These results bring to light the potential of micro-sized additives for use in lithium battery applications.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundations of China (No. 21473128).

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interests to declare.

References

  1. 1.
    Zhang JJ, Zhao JH, Yue LP, Wang QF, Chai JC, Liu ZH, Zhou XH, Li H, Guo YG, Cui GL, Chen LQ (2015) Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv Energy Mater.  https://doi.org/10.1002/aenm.201501082 Google Scholar
  2. 2.
    Zhou YF, Xie S, Chen CH (2006) In-situ thermal polymerization of rechargeable lithium batteries with poly(methyl methacrylate) based gel-polymer electrolyte. J Mater Sci 41:7492–7497.  https://doi.org/10.1007/s10853-006-0803-3 CrossRefGoogle Scholar
  3. 3.
    Prasanth R, Aravindan V, Srinivasan M (2012) Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly(methylmethacrylate)/polystyrene for lithium ion batteries—preparation and electrochemical characterization. J Power Sour 202:299–307CrossRefGoogle Scholar
  4. 4.
    Ramesh S, Ng HM (2011) An investigation on PAN–PVC–LiTFSI based polymer electrolytes system. Solid State Ionics 192:2–5CrossRefGoogle Scholar
  5. 5.
    Cui WW, Tang DY, Gong ZL, Guo YD (2012) Performance enhancement induced by electrospinning of polymer electrolytes based on poly(methyl methacrylate-co-2-acrylamido-2-methylpropanesulfonic acid lithium). J Mater Sci 47:6276–6285.  https://doi.org/10.1007/s10853-012-6547-3 CrossRefGoogle Scholar
  6. 6.
    Yue LP, Ma J, Zhang JJ, Zhao JY, Dong SM, Liu ZH, Cui GL, Chen LQ (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater 5:139–164CrossRefGoogle Scholar
  7. 7.
    Karthik K, Murugan R (2018) Lithium garnet based free-standing solid polymer composite membrane for rechargeable lithium battery. J Solid State Electrochem 22:2989–2998CrossRefGoogle Scholar
  8. 8.
    Srivastava S, Schaefer JL, Yang Z, Tu Z, Archer LA (2014) 25th anniversary article: polymer–particle composites: phase stability and applications in electrochemical energy storage. Adv Mater 26:201–234CrossRefGoogle Scholar
  9. 9.
    Ramesh S, Arof AK (2009) A study incorporating nano-sized silica into PVC-blend-based polymer electrolytes for lithium batteries. J Mater Sci 44:6404–6407.  https://doi.org/10.1007/s10853-009-3883-z CrossRefGoogle Scholar
  10. 10.
    Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458CrossRefGoogle Scholar
  11. 11.
    Kim JW, Ji KS, Lee JP, Park JW (2003) Electrochemical characteristics of two types of PEO-based composite electrolyte with functional SiO2. J Power Sour 119–121:415–421CrossRefGoogle Scholar
  12. 12.
    Wang ZX, Huang XJ, Chen LQ (2003) Understanding of effects of nano-Al2O3 particles on ionic conductivity of composite polymer electrolytes. Electrochem Solid State Lett 6:E40–E44CrossRefGoogle Scholar
  13. 13.
    Xiong HM, Zhao KK, Zhao X, Wang YW, Chen JS (2003) Elucidating the conductivity enhancement effect of nano-sized SnO2 fillers in the hybrid polymer electrolyte PEO–SnO2–LiClO4. Solid State Ionics 159:89–95CrossRefGoogle Scholar
  14. 14.
    Chenyang YW, Chen SY, Yuan CY, Tsai CH, Yan DP (2005) Preparation and characterization of composite polymer electrolytes based on UV-curable Vinylic ether-containing cyclotriphosphazene, LiClO4, and α-Al2O3. Macromolecules 38:2710–2715CrossRefGoogle Scholar
  15. 15.
    Ishida H, Campbell S, Blackwell J (2000) General Approach to Nanocomposite Preparation. Chem Mater 12:1260–1267CrossRefGoogle Scholar
  16. 16.
    Gilman JW, Jackson CL, Morgan AB, Harris R (2000) Flammability properties of polymer–layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater 12:1866–1873CrossRefGoogle Scholar
  17. 17.
    Suski L, Tarniowy M (2001) The phase stability of solid LiAlO2 used for the electrolyte matrix of molten carbonate fuel cells. J Mater Sci 36:5119–5124.  https://doi.org/10.1023/A:1012425324262 CrossRefGoogle Scholar
  18. 18.
    Croce F, Scrosati B, Mariotto G (2002) Electrochemical and spectroscopic study of the transport properties of composite polymer electrolytes. Chem Mater 4:1134–1136CrossRefGoogle Scholar
  19. 19.
    Wang G, Roos J, Brinkmann D, Capuano F, Croce F, Scrosati B (1992) Comparison of NMR and conductivity in (PEP) 8LiClO4 + γ-LiAlO2. Solid State Ionics 53–56:1102–1105Google Scholar
  20. 20.
    Hu LF, Tang ZL, Zhang ZT (2007) New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4. J Power Sour 166:226–232CrossRefGoogle Scholar
  21. 21.
    Kumar B, Nellutla S, Thokchom JS, Chen C (2006) Ionic conduction through heterogeneous solids: delineation of the blocking and space charge effects. J Power Sour 160:1329–1335CrossRefGoogle Scholar
  22. 22.
    Karatas Y, Banhatti RD, Kaskhedikar N, Burjanadze M, Funke K, Wiemhofer HD (2009) Synthesis and modeling of polysiloxane-based salt-in-polymer electrolytes with various additives. J Phys Chem B 113:15473–15484CrossRefGoogle Scholar
  23. 23.
    Alarco PJ, Abu-Lebdeh Y, Abouimrane A, Armand M (2004) The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat Mater 3:476–481CrossRefGoogle Scholar
  24. 24.
    Fan LZ, Hu YS, Bhattacharyya AJ, Maier J (2007) Succinonitrile as a versatile additive for polymer electrolytes. Adv Funct Mater 17:2800–2807CrossRefGoogle Scholar
  25. 25.
    Fan LZ, Wang XL, Long F, Wang X (2008) Enhanced ionic conductivities in composite polymer electrolytes by using succinonitrile as a plasticizer. Solid State Ionics 179:1772–1775CrossRefGoogle Scholar
  26. 26.
    Joshi UA, Chung SH, Lee JS (2005) Surfactant-free hydrothermal synthesis of lithium aluminate microbricks and nanorods from aluminium oxide nanoparticles. Chem Commun 35–36:4471–4473CrossRefGoogle Scholar
  27. 27.
    Xi JY, Qiu XP, Ma XM, Cui MZ, Yang J, Tang XZ, Zhu WT, Chen LQ (2005) Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer battery. Solid State Ionics 176:1249–1260CrossRefGoogle Scholar
  28. 28.
    Chen B, Huang Z, Chen X, Zhao Y, Xu Q, Long P, Chen S, Xu X (2016) A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochim Acta 210:905–914CrossRefGoogle Scholar
  29. 29.
    Morales E (1998) Morphological properties of composite solid polymer electrolytes based on polyethylene oxide. J Appl Polym Sci 69:2435–2440CrossRefGoogle Scholar
  30. 30.
    Han HB, Liu K, Feng SW, Zhou SS, Feng WF, Nie J, Li H, Huang XJ, Matsumoto H, Armand M (2010) Ionic liquid electrolytes based on multimethoxyethyl substituted ammoniums and perfluorinated sulfonimides: preparation, characterization, and properties. Electrochim Acta 55:7134–7144CrossRefGoogle Scholar
  31. 31.
    Kumar B, Scanlon LG, Spry RJ (2001) On the origin of conductivity enhancement in polymer-ceramic composite electrolytes. J Power Sour 96:337–342CrossRefGoogle Scholar
  32. 32.
    Zhang JX, Zhao N, Zhang M, Li YQ, Chu PK, Guo XX, Di ZF, Wang X, Li H (2016) Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 28:447–454CrossRefGoogle Scholar
  33. 33.
    Chen SJ, Wang JY, Zhang ZH, Wu LB, Yao LL, Wei ZY, Deng YH, Xie DJ, Yao XY, Xu XX (2018) In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries. J Power Sour 387:72–80CrossRefGoogle Scholar
  34. 34.
    Fan LZ, Maier J (2006) Composite effects in poly(ethylene oxide)–succinonitrile based all-solid electrolytes. Electrochem Commun 8:1753–1756CrossRefGoogle Scholar
  35. 35.
    Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J (2010) Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)–Li(CF3SO2)2N/Li. J Power Sour 195:6847–6853CrossRefGoogle Scholar
  36. 36.
    Maier J (1994) Defect chemistry at interfaces. Solid State Ionics 70–71:43–51CrossRefGoogle Scholar
  37. 37.
    Kumar B (2004) From colloidal to composite electrolytes: properties, peculiarities, and possibilities. J Power Sour 135:215–231CrossRefGoogle Scholar
  38. 38.
    Lee H, Choi S, Choi S, Kim HJ, Choi Y, Yoon S, Cho JJ (2007) SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5 V Li-ion batteries. Electrochem Commun 9:801–806CrossRefGoogle Scholar
  39. 39.
    Ju JW, Wang YT, Chen BB, Ma J, Dong SM, Chai JC, Qu HT, Cui LF, Wu XX, Cui GL (2018) Integrated interface strategy toward room temperature solid-state lithium batteries. ACS Appl Mater Interfaces 10:13588–13597CrossRefGoogle Scholar
  40. 40.
    Li ZH, Zhang DM, Yang FX (2009) Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material. J Mater Sci 44:2435–2443.  https://doi.org/10.1007/s10853-009-3316-z CrossRefGoogle Scholar
  41. 41.
    Nagaraju DH, Kuezma M, Suresh GS (2015) LiFePO4 wrapped reduced graphene oxide for high performance Li-ion battery electrode. J Mater Sci 50:4244–4249.  https://doi.org/10.1007/s10853-015-8976-2 CrossRefGoogle Scholar
  42. 42.
    Xu D, He YB, Chu X et al (2015) Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate. Chemsuschem 8:1009–1016CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations