Perpendicular magnetic anisotropy in compressive strained La0.67Sr0.33MnO3 films

  • Zhengyu Xiao
  • Fei Zhang
  • Muhammad Akhyar Farrukh
  • Rui Wang
  • Guowei Zhou
  • Zhiyong QuanEmail author
  • Xiaohong XuEmail author
Electronic materials


Perpendicular magnetic anisotropy (PMA) plays a critical role in spintronics, giving rise to improvements in fundamental research and industrial production. Generally, PMA originates mainly from the spin–orbit interaction with perpendicular orbital moment. However, electron orbitals are difficult to tune once they emerge. Here, we propose a simple and effective method for preparing (001)-oriented ultrathin La0.67Sr0.33MnO3 (LSMO) films with PMA, which is induced by compressive strain and surface symmetry breaking. Moreover, PMA was effectively strengthened by means of annealing under applied magnetic field. X-ray linear dichroism spectra reveal that PMA should be attributed to the preferential occupancy of the 3z2 − r2 orbital in LSMO films. The results presented here show that PMA can be manipulated by orbital reconstruction in perovskite manganite films under compressive strain through a simple and effective strategy. These findings illustrate a new method for designing and controlling magnetic anisotropy and might advance fundamental applications of orbital physics and spintronics.



The work was financially supported by the NSFC (Nos. 51571136, 61434002, and 51871137). The authors acknowledge the Beamline BL08U1A (Shanghai Synchrotron Radiation Facility, Shanghai, China) and Beamline BL12-a (National Synchrotron Radiation Laboratory, Hefei, China) stations for XAS measurements.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Miron IM, Garello K, Gaudin G, Zermatten PJ, Costache MV, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P (2011) Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476:189–193CrossRefGoogle Scholar
  2. 2.
    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan HD, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H (2010) A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat Mater 9:721–724CrossRefGoogle Scholar
  3. 3.
    Wang WG, Li M, Hageman S, Chien CL (2011) Electric-field-assisted switching in magnetic tunnel junctions. Nat Mater 11:64–68CrossRefGoogle Scholar
  4. 4.
    Yang SH, Ryu KS, Parkin S (2015) Domain-wall velocities of up to 750 ms−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat Nanotechnol 10:221–226CrossRefGoogle Scholar
  5. 5.
    Yakovenko OS, Matzui LYu, Vovchenko LL, Trukhanov AV, Kazakevich IS, Trukhanov SV, Prylutskyy YI, Ritter U (2017) Magnetic anisotropy of the graphite nanoplatelet–epoxy and MWCNT–epoxy composites with aligned barium ferrite filler. J Mater Sci 52:5345–5358. CrossRefGoogle Scholar
  6. 6.
    Chiba D, Kawaguchi M, Fukami S, Ishiwata N, Shimamura K, Kobayashi K, Ono T (2012) Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization. Nat Commun 3:888CrossRefGoogle Scholar
  7. 7.
    Nagaosa N, Tokura Y (2013) Topological properties and dynamics of magnetic skyrmions. Nat Nanotechnol 8:899–911CrossRefGoogle Scholar
  8. 8.
    Jué E, Safeer CK, Drouard M, Lopez A, Balint P, Buda-Prejbeanu L, Boulle O, Auffret S, Schuhl A, Manchon A, Miron IM, Gaudin G (2016) Chiral damping of magnetic domain walls. Nat Mater 15:272–277CrossRefGoogle Scholar
  9. 9.
    Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D, Locatelli A, Menteş TO, Sala A, Buda-Prejbeanu LD, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif SM, Aballe L, Foerster M, Chshiev M, Auffret S, Miron IM, Gaudin G (2016) Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat Nanotechnol 11:449–454CrossRefGoogle Scholar
  10. 10.
    Li P, Liu T, Chang H, Kalitsov A, Zhang W, Csaba G, Li W, Richardson D, DeMann A, Rimal G, Dey H, Jiang JS, Porod W, Field SB, Tang J, Marconi MC, Hoffmann A, Mryasov O, Wu M (2016) Spin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy. Nat Commun 7:12688CrossRefGoogle Scholar
  11. 11.
    Chen W, Xiao G, Zhang Q, Zhang X (2018) Temperature study of the giant spin Hall effect in the bulk limit of β − W. Phys Rev B 98:134411CrossRefGoogle Scholar
  12. 12.
    Shao Q, Tang C, Yu G, Navabi A, Wu H, He C, Li J, Upadhyaya P, Zhang P, Razavi SA, He QL, Liu Y, Yang P, Kim SK, Zheng C, Liu Y, Pan L, Lake RK, Han X, Tserkovnyak Y, Shi J, Wang KL (2018) Role of dimensional crossover on spin–orbit torque efficiency in magnetic insulator thin films. Nat Commun 9:3612CrossRefGoogle Scholar
  13. 13.
    Liu L, Pai C-F, Li Y, Tseng HW, Ralph DC, Buhrman RA (2012) Spin–torque switching with the giant spin Hall effect of tantalum. Science 336:555–558CrossRefGoogle Scholar
  14. 14.
    Bowen M, Bibes M, Barthélémy A, Contour JP, Anane A, Lemaı̂tre Y, Fert A (2003) Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments. Appl Phys Lett 82:233–235CrossRefGoogle Scholar
  15. 15.
    Park JH, Vescovo E, Kim HJ, Kwon C, Ramesh R, Venkatesan T (1998) Direct evidence for a half-metallic ferromagnet. Nature 392:794CrossRefGoogle Scholar
  16. 16.
    Liu HX, Wang CB, Yin WuL, Li L, Shen Q, Zhang LM (2018) Effect of Ho-doping on structural, electrical and magnetic properties of La0.7Sr0.3MnO3 ceramics prepared by plasma-activated sintering. J Mater Sci 53:2375–2382. CrossRefGoogle Scholar
  17. 17.
    Quan Z, Wu B, Zhang F, Zhou G, Zang J, Xu X (2017) Room temperature insulating ferromagnetism induced by charge transfer in ultrathin (110) La0.7Sr0.3MnO3 films. Appl Phys Lett 110:072405CrossRefGoogle Scholar
  18. 18.
    Qin Q, He S, Song W, Yang P, Wu Q, Feng YP, Chen J (2017) Ultra-low magnetic damping of perovskite La0.7Sr0.3MnO3 thin films. Appl Phys Lett 110:112401CrossRefGoogle Scholar
  19. 19.
    Tsui F, Smoak MC, Nath TK, Eom CB (2000) Strain-dependent magnetic phase diagram of epitaxial La0.67Sr0.33MnO3 thin films. Appl Phys Lett 76:2421–2423CrossRefGoogle Scholar
  20. 20.
    Steenbeck K, Habisreuther T, Dubourdieu C, Sénateur JP (2002) Magnetic anisotropy of ferromagnetic La0.7Sr0.3MnO3 epitaxial thin films: dependence on temperature and film thickness. Appl Phys Lett 80:3361–3363CrossRefGoogle Scholar
  21. 21.
    Boschker H, Mathews M, Houwman EP, Nishikawa H, Vailionis A, Koster G, Rijnders G, Blank DHA (2009) Strong uniaxial in-plane magnetic anisotropy of (001)- and (011)-oriented La0.67Sr0.33MnO3 thin films on NdGaO3 substrates. Phys Rev B 79:214425CrossRefGoogle Scholar
  22. 22.
    Berndt LM, Balbarin V, Suzuki Y (2000) Magnetic anisotropy and strain states of (001) and (110) colossal magnetoresistance thin films. Appl Phys Lett 77:2903–2905CrossRefGoogle Scholar
  23. 23.
    Dho J, Kim YN, Hwang YS, Kim JC, Hur NH (2003) Strain-induced magnetic stripe domains in La0.7Sr0.3MnO3 thin films. Appl Phys Lett 82:1434–1436CrossRefGoogle Scholar
  24. 24.
    Bakaul SR, Miao BF, Lin W, Hu W, David A, Ding HF, Wu T (2012) Domain-related origin of magnetic relaxation in compressively strained manganite thin films. Appl Phys Lett 101:012408CrossRefGoogle Scholar
  25. 25.
    Mathews M, Postma FM, Lodder JC, Jansen R, Rijnders G, Blank DHA (2005) Step-induced uniaxial magnetic anisotropy of La0.67Sr0.33MnO3 thin films. Appl Phys Lett 87:242507CrossRefGoogle Scholar
  26. 26.
    Cui B, Song C, Gehring GA, Li F, Wang G, Chen C, Peng J, Mao H, Zeng F, Pan F (2015) Electrical manipulation of orbital occupancy and magnetic anisotropy in manganites. Adv Funct Mater 25:864–870CrossRefGoogle Scholar
  27. 27.
    Zhang J, Zhong Z, Guan X, Shen X, Zhang J, Han F, Zhang H, Zhang H, Yan X, Zhang Q, Gu L, Hu F, Yu R, Shen B, Sun J (2018) Symmetry mismatch-driven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures. Nat Commun 9:1923CrossRefGoogle Scholar
  28. 28.
    Huijben M, Martin LW, Chu YH, Holcomb MB, Yu P, Rijnders G, Blank DHA, Ramesh R (2008) Critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films. Phys Rev B 78:094413CrossRefGoogle Scholar
  29. 29.
    Peng R, Xu HC, Xia M, Zhao JF, Xie X, Xu DF, Xie BP, Feng DL (2014) Tuning the dead-layer behavior of La0.67Sr0.33MnO3/SrTiO3 via interfacial engineering. Appl Phys Lett 104:081606CrossRefGoogle Scholar
  30. 30.
    Gu M, Wang Z, Biegalski MD, Christen HM, Takamura Y, Browning ND (2013) Antisite defects in La0.7Sr0.3MnO3 and La0.7Sr0.3FeO3. Appl Phys Lett 102:151911CrossRefGoogle Scholar
  31. 31.
    Zhang X, Wan CH, Yuan ZH, Zhang QT, Wu H, Huang L, Kong WJ, Fang C, Khan U, Han XF (2016) Electrical control over perpendicular magnetization switching driven by spin–orbit torques. Phys Rev B 94:174434CrossRefGoogle Scholar
  32. 32.
    Wang HY, Ma XK, He YJ, Mitani S, Motokawa M (2004) Enhancement in ordering of FePt films by magnetic field annealing. Appl Phys Lett 85:2304–2306CrossRefGoogle Scholar
  33. 33.
    Yang Y, Liu B, Tang D, Zhang B, Lu M, Lu H (2010) Influence of the magnetic field annealing on the extrinsic damping of FeCoB soft magnetic films. J Appl Phys 108:073902CrossRefGoogle Scholar
  34. 34.
    Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green RJ, Van Aert S, Verbeeck J, Van Tendeloo G, Held K, Sawatzky GA, Koster G, Rijnders G (2016) Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling. Nat Mater 15:425–431CrossRefGoogle Scholar
  35. 35.
    Pesquera D, Herranz G, Barla A, Pellegrin E, Bondino F, Magnano E, Sánchez F, Fontcuberta J (2012) Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films. Nat Commun 3:1189CrossRefGoogle Scholar
  36. 36.
    Bruno P (1989) Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. Phys Rev B 39:865–868CrossRefGoogle Scholar
  37. 37.
    Kim MW, Moon SJ, Jung JH, Yu J, Parashar S, Murugavel P, Lee JH, Noh TW (2006) Effect of orbital rotation and mixing on the optical properties of orthorhombic RMnO3 (R = La, Pr, Nd, Gd, and Tb). Phys Rev Lett 96:247205CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, The School of Chemistry and Materials ScienceShanxi Normal UniversityLinfenChina
  2. 2.Research Institute of Materials ScienceShanxi Normal UniversityLinfenChina
  3. 3.Department of ChemistryForman Christian College (A Chartered University)LahorePakistan

Personalised recommendations