Advertisement

Journal of Materials Science

, Volume 54, Issue 11, pp 8786–8799 | Cite as

Precipitation of various oxides in ODS ferritic steels

  • N. H. OonoEmail author
  • S. Ukai
  • K. Tominaga
  • N. Ebisawa
  • K. Tomura
Metals
  • 264 Downloads

Abstract

The reactive elements (Ti, Al and Zr) have been widely used for the improvement of the strength or the oxide resistance of ODS steels. In the present work, we studied the effect of the reactive elements on the precipitation of oxide particles, especially focusing upon the appropriate amount of the oxide composing elements, by addition of the large amounts of Y2O3 and reactive elements. The mechanically alloyed powders are annealed in a wide temperature range from 773 to 1423 K and then analysed by various analysis methods (small-angle X-ray scattering and X-ray diffraction by synchrotron radiation X-ray, scanning transmission electron microscope combined with energy dispersion X-ray spectroscopy, high-resolution transmission microscopy and 3D-atom probe). Ti, Al and Zr enhanced the growth of oxide particles, opposite to the many studies of Ti- and Zr-added ODS steels, as a result of the addition of Y2O3 and these elements ten times larger than those for usual use. The nucleation and growth of oxide particles are discussed by simulating the critical radius of nucleation and the growth based on the LSW theory. Y4Zr3O12 is stable and easy to precipitate even at lower annealing temperature. All reactive elements enhance the growth of oxide particles because of their big molar volume as compared to that of Y2O3.

Notes

Acknowledgements

This study was supported by MEXT/JSPS KAKENHI Grant Number JP26820325. The synchrotron radiation experiments were performed at the BL19B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2015A1669); the SAXS and XRD measurements were supported by M. Satou and K. Osaka, respectively. 3DAP analysis was carried out at the International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University. The TEM works were conducted at “Joint-use Facilities: Laboratory of Nano-Micro Material Analysis”, Hokkaido University, supported by “Nanotechnology Platform” Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Supplementary material

10853_2019_3516_MOESM1_ESM.pdf (54 kb)
Supplementary material 1 (PDF 53 kb)

References

  1. 1.
    Ukai S, Harada M, Okada H, Inoue M, Nomura S, Shikakura S, Asabe K, Nishida T, Fujiwara M (1993) Alloying design of oxide dispersion for long life FBRs core materials strengthened ferritic steel. J Nucl Mater 204:65–73CrossRefGoogle Scholar
  2. 2.
    Ukai S, Mizuta S, Fujiwara M, Okuda T, Kobayashi T (2002) Development of 9Cr-ODS martensitic steel claddings for fuel pins by means of ferrite to austenite phase transformation. J Nucl Sci Tech 39(7):778–788CrossRefGoogle Scholar
  3. 3.
    Dubuisson P, Carlan YD, Garat V, Blat M (2012) ODS ferritic/martensitic alloys for sodium fast reactor fuel pin cladding. J Nucl Mater 428(1–3):6–12CrossRefGoogle Scholar
  4. 4.
    Ukai S, Fujiwara M (2002) Perspective of ODS alloys application in nuclear environments. J Nucl Mater 307–311(1):749–757CrossRefGoogle Scholar
  5. 5.
    Lindau R, Möslang A, Rieth M, Klimiankou M, Materna-Morris E, Alamo A, Tavassoli A-A, Cayron C, Lancha A-M, Fernandez P, Baluc N, Schäublin R, Diegele E, Filacchioni G, Rensman J, Schaaf B, Lucon E, Dietz W (2005) Present development status of EUROFER and ODS-EUROFER for application in blanket concepts. Fus Eng Des 75–79:989–996CrossRefGoogle Scholar
  6. 6.
    Oksiuta Z, Olier P, Carlan YD, Baluc N (2009) Development and characterisation of a new ODS ferritic steel for fusion reactor application. J Nucl Mater 393:114–119CrossRefGoogle Scholar
  7. 7.
    Baluc N, Boutard J, Dudarev S, Rieth M, Correia JB, Fournier B, Henry J, Legendre F, Leguey T, Lewandowska M, Linday R, Marquis E, Muñoz A, Radiguet B, Oksiuta Z (2011) Review on the EFDA work programme on nano-structured ODS RAF steels. J Nucl Mater 417:149–153CrossRefGoogle Scholar
  8. 8.
    Ukai S, Oono N, Ohtsuka S, Kaito T, Sakamoto K, Torimaru T, Kiimura A, Hayashi S (2016) Development of FeCrAl-ODS Steels for ATF Cladding. In: Proceedings light water reactor (LWR) fuel performance meeting (TOP FUEL) 2016Google Scholar
  9. 9.
    Kim S, Ohtsuka S, Kaito T, Yamashita S, Inoue M, Asayama T, Shobu T (2011) Formation of nano-size oxide particles and δ-ferrite at elevated temperature in 9Cr-ODS steel. J Nucl Mater 417(1–3):209–212CrossRefGoogle Scholar
  10. 10.
    He P, Liu T, Möslang A, Lindau R, Ziegler R, Hoffmann J, Kurinskiy P, Commin L, Vladimirov P, Nikitenko S, Silveir M (2012) XAFS and TEM studies of the structural evolution of yttrium-enriched oxides in nanostructured ferritic alloys fabricated by a powder metallurgy process. Mater Chem Phys 136:990–998CrossRefGoogle Scholar
  11. 11.
    Oono N, Ukai S (2018) Precipitation of oxide particles in oxide dispersion strengthened (ODS) ferritic steels. Mater Trans 59(10):1651–1658CrossRefGoogle Scholar
  12. 12.
    Alinger M, Odette G, Hoelzer D (2004) The development and stability of Y–Ti–O nanoclusters in mechanically alloyed Fe–Cr based ferritic alloys. J Nucl Mater 239–333:382–386CrossRefGoogle Scholar
  13. 13.
    Hoelzer D, Bentley J, Sokolov M, Miller M, Odette G, Alinger M (2007) Influence of particle dispersions on the high-temperature strength of ferritic alloys. J Nucl Mater 367–370:166–172CrossRefGoogle Scholar
  14. 14.
    Ukai S, Ohtsuka S (2007) Nano-mesoscopic structure control in 9Cr-ODS ferritic steels. Energy Mater 2(1):26–35CrossRefGoogle Scholar
  15. 15.
    Kim I, Choi B, Kang C, Okuda T, Maziasz P, Miyahara K (2003) Effect of Ti and W on the mechanical properties and microstructure of 12% Cr base mechanical-alloyed nano-sized ODS ferritic alloys. ISIJ Int 43(10):1640–1646CrossRefGoogle Scholar
  16. 16.
    Sakasegawa H, Legendre F, Boulanger L, Brocq M, Chaffron L, Cozzika T, Malaplate J, Henry J, Carlan YD (2011) Stability of non-stoichiometric clusters in the MA957 ODS ferrtic alloy. J Nucl Mater 417:229–232CrossRefGoogle Scholar
  17. 17.
    Ribis J, Carlan YD (2012) Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials. Acta Mater 60:238–252CrossRefGoogle Scholar
  18. 18.
    Hirata A, Fujita T, Wen Y, Schneibel J, Liu C, Chen M (2011) Atomic structure of nanoclusters in oxide-dispersion-strengthened steels. Nat Mater 10(12):922–926CrossRefGoogle Scholar
  19. 19.
    Brocq M, Radiguet B, Poissonnet S, Cuvilly F, Pareige P, Legendre F (2011) Nanoscale characterization and formation mechanism of nanoclusters in an ODS steel elaborated by reactive-inspired ball-milling and annealing. J Nucl Mater 409:80–85CrossRefGoogle Scholar
  20. 20.
    Rogozhkin S, Orlov NN, Nikitin A, Aleev A, Zaluzhnyi A, Kozodaev M, Lindau R, Möslang A, Vladimirov P (2015) Nanoscale characterization of 13.5% Cr oxide dispersion strengthened steels with various titanium concentrations. Inorg Mater Appl Res 6(2):151–155CrossRefGoogle Scholar
  21. 21.
    Liu S, Odette G, Segre C (2014) Evidence for core–shell nanoclusters in oxygen dispersion strengthened steels measured using X-ray absorption spectroscopy. J Nucl Mater 445:50–56CrossRefGoogle Scholar
  22. 22.
    Jiang Y, Smith J, Odette G (2009) Formation of Y–Ti–O nanoclusters in nanostructured ferritic alloys: a first-principles study. Phys Rev B 79:064103CrossRefGoogle Scholar
  23. 23.
    Materials Database Group (2010) Inorganic material database (AtomWork). Natl Inst Mater Sci 06. [Online]. http://crystdb.nims.go.jp/index_en.html. Accessed 06 2017
  24. 24.
    Oba Y, Koppoju S, Ohnuma M, Murakami T, Hatano H, Sasakawa K, Kitahara A, Suzuki J (2011) Quantitative analysis of precipitate in vanadium-microalloyed medium carbon steels using small-angle X-ray and neutron scattering methods. ISIJ Int 51(11):1852–2858CrossRefGoogle Scholar
  25. 25.
    Kogure T (2015) Geometry of electron diffraction and its calculation. Microsc (Jpn) 50(1):1–5Google Scholar
  26. 26.
    Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K, Jung IH, Kang YB, Melançon J, Pelton AD, Robelin C, Petersen S (2009) FactSage thermochemical software and databases—recent developments. Calphad 33(2):295–311CrossRefGoogle Scholar
  27. 27.
    Adylov T, Voronov G, Mansurova E, Sigalov LM, Urazaeva E (1988) The Y2O3–Al2O3 system above 1473 K. Russ J Inorg Chem 33:1062–1063Google Scholar
  28. 28.
    Schaedler T, Fabrichanaya O, Levi C (2008) Phase equilibria in the TiO2–YO1.5–ZrO2 system. J Eur Ceram Soc 28:2509–2520CrossRefGoogle Scholar
  29. 29.
    Foëx M, Traverse J-P (1965) Étude à haute température des transformations allotropiques des sesquioexydes d’yttrium, d’erbium et de thulium. Comptes rendus hebdomadaires des séances de l’Académie des sciences 261(9):2490–2493Google Scholar
  30. 30.
    Buntushkin V, Romanovich I, Timofeeva N (1971) High-temperature microhardness and certain properties of refractory oxides. Inorg Mater 7(9):1456–1457Google Scholar
  31. 31.
    Red’ko V, Lopato L (1991) Magnetic Susceptibility Of M4ZR3O12 and M4HF3O12 (M-rare-earth element). Inorg Mater 27:1495–1497Google Scholar
  32. 32.
    Maister I, Lopato L, Zaitseva Z, Shevchenko A (1991) Interaction in the ZRO2-Y2O3-SC2O3 system at 1300–1900C. Inorg Mater 27(11):1997–2000Google Scholar
  33. 33.
    Kim D-J, Hyun S-H, Kim S-G, Yashima M (1994) Effective ionic radius of Y3 + determined from lattice parameters of fluorite-type HfO2 and ZrO2 solid solutions. J Am Ceram Soc 77(2):597–599CrossRefGoogle Scholar
  34. 34.
    Sharygin L, Galkin V, Vovk S, Dorofeev Y (1991) Solid solutions of the ZRO2-Y2O3 system produced by the sol–gel method. Inorg Mater 27(2):221–224Google Scholar
  35. 35.
    Skrikanth V, Sato A, Yoshimoto J, Kim J, Ikegami T (1994) Synthesis and crystal structure study of Y2O3 high-pressure polymorph. Cryst Res Technol 29(7):981–984CrossRefGoogle Scholar
  36. 36.
    Andrievskaya ELLKVZZ (1996) Inorg Mater 32:645–653Google Scholar
  37. 37.
    Dolgikh V, Lavat E (1991) Russ J Inorg Chem 36:1389–1392Google Scholar
  38. 38.
    Bertaut F, Mareschal J, Hebd CR (1963) Seances Acad Sci 257:867–870Google Scholar
  39. 39.
    Zhou Y, Lu X, Xiang H, Feng Z (2015) Preparation, mechanical, and thermal properties of a promising thermal barrier material: Y4Al2O9. J Adv Ceram 4(2):94–102CrossRefGoogle Scholar
  40. 40.
    Larson D, Maziasz P, Kim I, Miyahara K (2001) Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersion-strengthened Fe–12Cr–3W–0.4Ti + Y2O3 ferritic alloy. Scr Mater 44:359–364CrossRefGoogle Scholar
  41. 41.
    Miller M, Russell K, Hoelzer D (2006) Characterization of precipitates in MA/ODS ferritic alloys. J Nucl Mater 351:261–268CrossRefGoogle Scholar
  42. 42.
    London A, Santra S, Amirthapandian S, Panigrahi B, Sarguna R, Balaji S, Vijay R, Sundar C, Lozano-Perez S, Grovenor C (2015) Effect of Ti and Cr on dispersion, structure and composition of oxide nano-particles in model ODS alloys. Acta Mater 97:223–233CrossRefGoogle Scholar
  43. 43.
    Boulant X, Perez M, Fabrègue D, Cazottes S, de Carlan Y (2016) Characterization and modeling of oxides precipitation in ferritic steels during fast non-isothermal consolidation. Acta Mater 107:390–403CrossRefGoogle Scholar
  44. 44.
    Pavlina EJ, Speer JG, Van Tyne CJ (2012) Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron. Scr Mater 66:243–246CrossRefGoogle Scholar
  45. 45.
    Dou P, Kimura A, Kasasda R, Okuda T, Inoe M, Ukai S, Ohnuki S, Fujisawa T, Abe F (2014) TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition. J Nucl Mater 444:441–453CrossRefGoogle Scholar
  46. 46.
    Oono N, Tang Q, Ukai S (2016) Oxide particle refinement in Ni-based ODS alloy. Mater Sci Eng A 649:250–253CrossRefGoogle Scholar
  47. 47.
    Schuler T, Nastar M, Soisson F (2017) Vacancy-induced dissolution of precipitates in out-of-equilibrium systems: a test case of FeX (X = C, N, O) alloys. Phys Rev B 95(1):1–13CrossRefGoogle Scholar
  48. 48.
    Latella B, Humphries S (2004) Young’s modulus of a 2.25Cr–1Mo steel at elevated temperature. Scr Mater 51:635–639CrossRefGoogle Scholar
  49. 49.
    Elsukov E, Voronina E, Barinov V (1992) J Magn Magn Mater 115:271–280CrossRefGoogle Scholar
  50. 50.
    Skandan G, Foster C, Frase H, Ali MN, Parker JC, Hahn H (1992) Phase characterization and stabilization due to grain size effects of nanostructured Y2O3. Nanostruct Mater 1(4):313–322CrossRefGoogle Scholar
  51. 51.
    Villars P, Cenzual K (eds) Y2Ti2O7 Crystal Structur: datasheet from “PAULING FILE multinaries edition - 2012”. Springer, Hidelberg and Material Phases Data System (MDPS), Switzerland & National Institute for Materials Science (NIMS), Japan, 2016. [Online]. https://materials.springer.com/isp/crystallographic/docs/sd_1903246. Accessed 18 Dec 2018
  52. 52.
    Persson KA (2016) “Materials data on Y4Al2O9 (SG: 14)” Materials Project, United States. [Online].  https://doi.org/10.17188/1264857. Accessed Dec 18 2018
  53. 53.
    Oono N, Nakamura K, Ukai S, Kaito T, Torimaru T, Kimura A, Hayashi S (2016) Oxide particle coarsening at temperature over 1473 K in 9CrODS steel. Nucl Mater Energy 9:342–345CrossRefGoogle Scholar
  54. 54.
    Villars P, Cenzual K (2012) YAlO3; YAP (YAlO3 rt) crystal structure: datasheet from “PAULING FILE Multinaries Edition – 2012”. In: SpringerMaterials. Springer, Berlin & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan, 2012. [Online]. https://materials.springer.com/isp/crystallographic/docs/sd_1924024. Accessed 18 Dec 2018
  55. 55.
    Persson KA (2014) “Materials data on Y4Zr3O12 (SG:2)” Materials Project. United States. [Online].  https://doi.org/10.17188/1282854. Accessed 28 Dec 2018
  56. 56.
    Oono NH, Ukai S, Hayashi S, Ohtsuka S, Kaito T, Kimura A, Torimaru T, Sakamoto K (2017) Growth of oxide particles in FeCrAl- oxide dispersion strengthened steels at high temperature. J Nucl Mater J 493:180–188CrossRefGoogle Scholar
  57. 57.
    Wagner C (1961) Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Zeitschrift für Elektrochemie 65(7):581–591Google Scholar
  58. 58.
    Rios PR (1993) Quasi-stoichiometric coarsening of f.c.c. carbides in microalloyed austenite containing niobium and vanadium. Mater Sci Eng A 171(1–2):175–179CrossRefGoogle Scholar
  59. 59.
    Zhang W, Liu G, Han K (1986) Fe–Y (iron–yttrium). In: Massalski TB (ed) Binary alloy phase diagrams, vol 2. Fe–Ru to Zn–Zr. American Society for Metals, Metals Park, pp 1793–1794Google Scholar
  60. 60.
    Darken LS, Gurry RW (1946) The system iron—oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases. J Am Chem Soc 68(5):798–816CrossRefGoogle Scholar
  61. 61.
    Alinger MJ (2004) On the formation and stability of nanometer scale precipitates in ferritic alloys during processing and high temperature service. University of California Santa Barbara, CaliforniaGoogle Scholar
  62. 62.
    Hirvonen J, Räisänen J (1982) Diffusion of aluminum in ion-implanted alpha iron. J Appl Phys 53:3314–3316CrossRefGoogle Scholar
  63. 63.
    Murali D, Panigrahi B, Valsakumar M, Sundar C (2011) Diffusion of Y and Ti/Zr in bcc iron: a first principles study. J Nucl Mater 419:208–212CrossRefGoogle Scholar
  64. 64.
    Klugkist P, Herzig C (1995) Tracer diffusion of titanium in α-iron. Phys Stat Solidi (a) 148:413–421CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty, Graduate School and School of EngineeringHokkaido UniversitySapporoJapan
  2. 2.International Research Center for Nuclear Materials Science, Institute for Materials ResearchTohoku UniversityOaraiJapan

Personalised recommendations