Advertisement

Journal of Materials Science

, Volume 54, Issue 11, pp 8236–8246 | Cite as

Synergetic effect of Fe2O3 and BiVO4 as photocatalyst nanocomposites for improved photo-Fenton catalytic activity

  • Yun Wen
  • Yue Zhao
  • Mingzhen Guo
  • Yan XuEmail author
Chemical routes to materials
  • 35 Downloads

Abstract

Photo-Fenton reactions and the related functional nanomaterials have been widely studied for applications in wastewater treatment industry. Herein, visible-light-responsive Fe2O3 nanoparticle-decorated BiVO4 nanoplates were designed and successfully prepared through a one-pot hydrothermal route. The as-prepared Fe2O3/BiVO4 nanocomposites exhibit excellent photo-Fenton catalytic activity toward the discoloration of methylene blue (MB) and Rhodamine B (RhB) dye molecules in the presence of H2O2. The experimental results indicate that nearly 100% of MB (100 mL, 10 mg L−1) and RhB (100 mL, 5 mg L−1) dye molecules are degraded in the presence of 1 g L−1 Fe2O3/BiVO4-1 (FB-1) photo-Fenton catalyst and 0.5 mL of H2O2 within 20 min. The Fe2O3/BiVO4 Fenton photocatalyst also demonstrates high reusability under visible light irradiation with λ ≥ 420 nm. The photoinduced electrons on the conduction band of BiVO4 nanoplates can move toward the surface of Fe2O3/BiVO4 to accelerate the reduction of Fe3+; then, the as-formed Fe2+ ions on the surface of the catalyst greatly enhance the decomposition of H2O2 to form reactive ·OH species for the use in photodegradation of MB and RhB dye molecules. The synergetic effect of Fe2O3 and BiVO4 reported in this work might provide more opportunity to fabricate other novel semiconductor-based Fenton nanocomposites for contamination treatments in wastewater.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21771031 and 21401018).

References

  1. 1.
    Clarizia L, Russo D, Di Somma I, Marotta R, Andreozzi R (2017) Homogeneous photo-Fenton processes at near neutral pH: a review. Appl Catal B Environ 209:358–371CrossRefGoogle Scholar
  2. 2.
    Nidheesh PV (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv 5:40552–40577CrossRefGoogle Scholar
  3. 3.
    Yang X, Chen W, Huang J, Zhou Y, Zhu Y, Li C (2015) Rapid degradation of methylene blue in a novel heterogeneous Fe3O4–rGO–TiO2-catalyzed photo-Fenton system. Sci Rep 5:10632CrossRefGoogle Scholar
  4. 4.
    Jiang WL, Xia X, Han JL, Ding YC, Haider MR, Wang AJ (2018) Graphene modified electro-Fenton catalytic membrane for in situ degradation of antibiotic florfenicol. Environ Sci Technol 52:9972–9982CrossRefGoogle Scholar
  5. 5.
    Zhong Y, Yu L, Chen ZF, He H, Ye F, Cheng G, Zhang Q (2017) Microwave-assisted synthesis of Fe3O4 nanocrystals with predominantly exposed facets and their heterogeneous UVA/Fenton catalytic activity. ACS Appl Mater Interfaces 9:29203–29212CrossRefGoogle Scholar
  6. 6.
    Navalon S, de Miguel M, Martin R, Alvaro M, Garcia H (2011) Enhancement of the catalytic activity of supported gold nanoparticles for the Fenton reaction by light. J Am Chem Soc 133:2218–2226CrossRefGoogle Scholar
  7. 7.
    Ma J, Xu L, Shen C, Hu C, Liu W, Wen Y (2018) Fe-N-Graphene wrapped Al2O3/pentlandite from microalgae: high Fenton catalytic efficiency from enhanced Fe3+ reduction. Environ Sci Technol 52:3608–3614CrossRefGoogle Scholar
  8. 8.
    Cheng X, Zu L, Jiang Y, Shi D, Cai X, Ni Y, Lin S, Qin Y (2018) A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO2-x nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes. Chem Commun 54:11622–11625CrossRefGoogle Scholar
  9. 9.
    Li W, Sun T, Li F (2014) Highly efficient Iron nanocatalyst stabilized by double-walled carbon nanotubes and mixed metal oxides for degradation of cationic and anionic dyes by a Fenton-like process. Ind Eng Chem Res 53:18095–18103CrossRefGoogle Scholar
  10. 10.
    Wang Y, Li J, Sun J, Wang Y, Zhao X (2017) Electrospun flexible self-standing Cu-Al2O3 fibrous membranes as Fenton catalysts for bisphenol A degradation. J Mater Chem A 5:19151–19158CrossRefGoogle Scholar
  11. 11.
    Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075CrossRefGoogle Scholar
  12. 12.
    Dai C, Tian X, Nie Y, Lin HM, Yang C, Han B, Wang Y (2018) Surface facet of CuFeO2 nanocatalyst: a key parameter for H2O2 activation in Fenton-like reaction and organic pollutant degradation. Environ Sci Technol 52:6518–6525CrossRefGoogle Scholar
  13. 13.
    Froschl T, Hormann U, Kubiak P, Kucerova G, Pfanzelt M, Weiss CK, Behm RJ, Husing N, Kaiser U, Landfester K, Wohlfahrt-Mehrens M (2012) High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chem Soc Rev 41:5313–5360CrossRefGoogle Scholar
  14. 14.
    Zheng JY, Song G, Hong J, Van TK, Pawar AU, Kim DY, Kim CW, Haider Z, Kang YS (2014) Facile fabrication of WO3 nanoplates thin films with dominant crystal facet of (002) for water splitting. Cryst Growth Des 14:6057–6066CrossRefGoogle Scholar
  15. 15.
    Shi W, Song S, Zhang H (2013) Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem Soc Rev 42:5714–5743CrossRefGoogle Scholar
  16. 16.
    Saison T, Chemin N, Chanéac C, Durupthy O, Mariey L, Maugé F, Brezová V, Jolivet J-P (2015) New insights into BiVO4 properties as visible light photocatalyst. J Phys Chem C 119:12967–12977CrossRefGoogle Scholar
  17. 17.
    Zhao Y, Li R, Mu L, Li C (2017) Significance of crystal morphology controlling in semiconductor-based photocatalysis: a case study on BiVO4 photocatalyst. Cryst Growth Des 17:2923–2928CrossRefGoogle Scholar
  18. 18.
    Xu T, Zhu R, Zhu G, Zhu J, Liang X, Zhu Y, He H (2017) Mechanisms for the enhanced photo-Fenton activity of ferrihydrite modified with BiVO4 at neutral pH. Appl Catal B Environ 212:50–58CrossRefGoogle Scholar
  19. 19.
    Zhang L, Zhou J, Zhang C (2014) pH-Controlled growth of ultrathin iron vanadium oxide (FeV3O8) nanoplatelets with high visible-light photo-catalytic activity. J Mater Chem A 2:14903–14907CrossRefGoogle Scholar
  20. 20.
    Zhao Y, Yao K, Cai Q, Shi Z, Sheng M, Lin H, Shao M (2014) Hydrothermal route to metastable phase FeVO4 ultrathin nanosheets with exposed 010 facets: synthesis, photocatalysis and gas-sensing. Cryst Eng Commun 16:270–276CrossRefGoogle Scholar
  21. 21.
    Li J, Cheng X, Zhang C, Wang J, Dong W, Yang Y, Li Y (2017) Alkalis in iron-based Fischer–Tropsch synthesis catalysts: distribution, migration and promotion. J Chem Technol Biotechnol 92:1472–1480CrossRefGoogle Scholar
  22. 22.
    Alcover IB, David R, Daviero-Minaud S, Filimonov D, Huvé M, Roussel P, Kabbour H, Mentré O (2015) Reversible exsolution of nanometric Fe2O3 particles in BaFe2–x(PO4)2 (0 ≤ x ≤ 2/3): the logic of vacancy ordering in novel metal-depleted two-dimensional lattices. Cryst Growth Des 15:4237–4247CrossRefGoogle Scholar
  23. 23.
    Wei Y, Wang B, Cui X, Muhammad Y, Zhang Y, Huang Z, Li X, Zhao Z, Zhao Z (2018) Highly advanced degradation of thiamethoxam by synergistic chemisorption-catalysis strategy using MIL(Fe)/Fe-SPC composites with ultrasonic irradiation. ACS Appl Mater Interfaces 10:35260–35272CrossRefGoogle Scholar
  24. 24.
    Li X, Cao J, Peng M (2018) The origin of the heterogeneous distribution of bismuth in aluminosilicate laser glasses. J Am Ceram Soc 101:2921–2929CrossRefGoogle Scholar
  25. 25.
    Ranjbar M, Mahdavi SM, Irajizad A (2008) Pulsed laser deposition of W–V–O composite films: preparation, characterization and gasochromic studies. Sol Energy Mater Sol C 92:878–883CrossRefGoogle Scholar
  26. 26.
    Zhang Q, Pang K, Xu Y (2018) Controlled synthesis of Bi2O3/BiOBr/Zn2GeO4 heterojunction photocatalysts with enhanced photocatalytic activity. J Am Ceram Soc 101:5858–5869CrossRefGoogle Scholar
  27. 27.
    Chen Y, Shi T, Liu P, Ma X, Shui L, Shang C, Chen Z, Wang X, Kempa K, Zhou G (2018) Insights into the mechanism of the enhanced visible-light photocatalytic activity of black phosphorus/BiVO4 heterostructure: a first-principles study. J Mater Chem A 6:19167–19175CrossRefGoogle Scholar
  28. 28.
    Kiwi J, Lopez A, Nadtochenko V (2000) Mechanism and kinetics of the OH-radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl). Environ Sci Technol 34:2162–2168CrossRefGoogle Scholar
  29. 29.
    Hems RF, Hsieh JS, Slodki MA, Zhou S, Abbatt JPD (2017) Suppression of OH generation from the photo-Fenton reaction in the presence of α-pinene secondary organic aerosol material. Environ Sci Technol Lett 4:439–443CrossRefGoogle Scholar
  30. 30.
    Chala S, Wetchakun K, Phanichphant S, Inceesungvorn B, Wetchakun N (2014) Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO4 photocatalyst. J Alloys Compd 597:129–135CrossRefGoogle Scholar
  31. 31.
    Yao Y, Cai Y, Lu F, Qin J, Wei F, Xu C, Wang S (2014) Magnetic ZnFe2O4–C3N4 hybrid for photocatalytic degradation of aqueous organic pollutants by visible light. Ind Eng Chem Res 53:17294–17302CrossRefGoogle Scholar
  32. 32.
    Bi D, Xu Y (2013) Synergism between Fe2O3 and WO3 particles: photocatalytic activity enhancement and reaction mechanism. J Mol Catal A Chem 367:103–107CrossRefGoogle Scholar
  33. 33.
    Hong SJ, Lee S, Jang JS, Lee JS (2011) Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci 4:1781–1787CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceNortheastern UniversityShenyangChina

Personalised recommendations