Journal of Materials Science

, Volume 54, Issue 11, pp 8346–8360 | Cite as

Verwey transition temperature distribution in magnetic nanocomposites containing polydisperse magnetite nanoparticles

  • G. Barrera
  • P. Tiberto
  • C. Sciancalepore
  • M. Messori
  • F. Bondioli
  • P. AlliaEmail author


Polymeric nanocomposites containing Fe3O4 nanoparticles were prepared through a chemical route under different precursor-to-solvent ratios and were submitted to structural and morphologic characterization. The embedded nanoparticles, containing pure magnetite and characterized by considerable polydispersity, are rather homogeneously dispersed in the matrix. The magnetic properties of two representative samples were analyzed in detail between T = 5 K and room temperature. Magnetic effects clearly associated with the Verwey monoclinic to cubic transition with transition temperatures distributed in the interval 95–120 K were put in evidence. On heating through this region, the coercive field and the maximum susceptibility of hysteresis loops display marked downward/upward steps, respectively, while the high-field magnetization is not affected at all; a comparable upward step is measured in the FC/ZFC curves. Reporting the maximum susceptibility as a function of the reciprocal of the coercive field in the interval from T = 95 to T = 120 K, and using the predictions for single-domain nanoparticles with randomly distributed axes of uniaxial and cubic anisotropy (the former/latter case being applicable below/above the Verwey transition, respectively), the evolution of the transformed cubic-anisotropy fraction upon heating has been studied, and the distribution of Verwey transition temperatures related to the sample polydispersity has been accurately determined. The low-temperature value of the uniaxial anisotropy constant is obtained from coercive field measurements and found to be comparable to, albeit slightly higher than the corresponding quantity measured in bulk crystalline magnetite.



This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Walz F (2002) The Verwey transition—a topical review. J Phys Condens Matter 14:R285–R340. CrossRefGoogle Scholar
  2. 2.
    García J, Subías G (2004) The Verwey transition—a new perspective. J Phys Condens Matter 16:R145. CrossRefGoogle Scholar
  3. 3.
    Tsuya N, Arai KI, Ohmori K (1977) Effect of magnetoelastic coupling on the anisotropy of magnetite below the transition temperature. Phys B + C 86–88:959–960. Google Scholar
  4. 4.
    Tartaj P, Morales P, Veintemillas-verdaguer S, Gonz T (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182–R197CrossRefGoogle Scholar
  5. 5.
    Sun S, Zeng H, Robinson DB et al (2004) Monodisperse MFe2O4 (M = Fe Co, Mn) nanoparticles. J Am Chem Soc 126:273–279. CrossRefGoogle Scholar
  6. 6.
    Pinna N, Grancharov S, Beato P et al (2005) Magnetite nanocrystals: nonaqueous synthesis, characterization, and solubility. Chem Mater 17:3044–3049. CrossRefGoogle Scholar
  7. 7.
    Chaichi M, Sharif F, Mazinani S (2017) Preparation and evaluation of magnetic field-induced orientation on magnetic nanoparticles on PVA nanocomposite films. J Mater Sci 53:5051–5062. CrossRefGoogle Scholar
  8. 8.
    Li J, Chen Y, Wu Q et al (2018) Synthesis of sea-urchin-like Fe3O4/SnO2 heterostructures and its application for environmental remediation by removal of p-chlorophenol. J Mater Sci. Google Scholar
  9. 9.
    Jalil WBF, Pentón-Madrigal A, Mello A et al (2017) Low toxicity superparamagnetic magnetite nanoparticles: one-pot facile green synthesis for biological applications. Mater Sci Eng C 78:457–466. CrossRefGoogle Scholar
  10. 10.
    Sen T, Shimpi NG, Mishra S, Sharma R (2014) Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing. Sens Actuators B Chem 190:120–126. CrossRefGoogle Scholar
  11. 11.
    Loh KS, Lee YH, Musa A et al (2008) Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid. Sensors 8:5775–5791. CrossRefGoogle Scholar
  12. 12.
    Mohammed L, Gomaa HG, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14. CrossRefGoogle Scholar
  13. 13.
    Ghazanfari MR, Kashefi M, Shams SF, Jaafari MR (2016) Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem Res Int 2016:1–32. CrossRefGoogle Scholar
  14. 14.
    Sarkar S, Guibal E, Quignard F, SenGupta AK (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanoparticle Res 14:715. CrossRefGoogle Scholar
  15. 15.
    Pang J, Li Z, Li S et al (2018) Folate-conjugated zein/Fe3O4 nanocomplexes for the enhancement of cellular uptake and cytotoxicity of gefitinib. J Mater Sci 53:14907–14921. CrossRefGoogle Scholar
  16. 16.
    Kim KJ, Park JW (2017) Stability and reusability of amine-functionalized magnetic-cored dendrimer for heavy metal adsorption. J Mater Sci 52:843–857. CrossRefGoogle Scholar
  17. 17.
    Caruntu D, Caruntu G, O’Connor CJ (2007) Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. J Phys D Appl Phys 40:5801–5809. CrossRefGoogle Scholar
  18. 18.
    Sciancalepore C, Gualtieri AF, Scardi P et al (2018) Structural characterization and functional correlation of Fe3O4 nanocrystals obtained using 2-ethyl-1,3-hexanediol as innovative reactive solvent in non-hydrolytic sol-gel synthesis. Mater Chem Phys 207:337–349. CrossRefGoogle Scholar
  19. 19.
    Knobel M, Nunes WC, Socolovsky LM et al (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8:2836–2857. CrossRefGoogle Scholar
  20. 20.
    Sciancalepore C, Bondioli F, Messori M et al (2015) Epoxy nanocomposites functionalized with in situ generated magnetite nanocrystals: microstructure, magnetic properties, interaction among magnetic particles. Polymer (UK) 59:278–289. CrossRefGoogle Scholar
  21. 21.
    López Maldonado KL, De La Presa P, Flores Tavizón E et al (2013) Magnetic susceptibility studies of the spin-glass and Verwey transitions in magnetite nanoparticles. J Appl Phys 113:2013–2016. CrossRefGoogle Scholar
  22. 22.
    Markovich G, Fried T, Poddar P et al (2002) Observation of the Verwey transition in Fe3O4 nanocrystals. MRS Proc 746(Q4):1. Google Scholar
  23. 23.
    Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528. CrossRefGoogle Scholar
  24. 24.
    Hevroni A, Bapna M, Piotrowski S et al (2016) Tracking the Verwey transition in single magnetite nanocrystals by variable-temperature scanning tunneling microscopy. J Phys Chem Lett 7:1661–1666. CrossRefGoogle Scholar
  25. 25.
    Arelaro AD, Brandl AL, Lima E et al (2005) Interparticle interactions and surface contribution to the effective anisotropy in biocompatible iron oxide nanoparticles used for contrast agents. J Appl Phys 97:2003–2006. CrossRefGoogle Scholar
  26. 26.
    Wang J, Chen Q, Li X et al (2004) Disappearing of the Verwey transition in magnetite nanoparticles synthesized under a magnetic field: implications for the origin of charge ordering. Chem Phys Lett 390:55–58. CrossRefGoogle Scholar
  27. 27.
    Lee J, Kwon SG, Park J-G, Hyeon T (2015) Size dependence of metal-insulator transition in stoichiometric Fe3O4 nanocrystals. Nano Lett 15:4337–4342. CrossRefGoogle Scholar
  28. 28.
    Mitra A, Mohapatra J, Meena SS et al (2014) Verwey transition in ultrasmall-sized octahedral Fe3O4 nanoparticles. J Phys Chem C 118:19356–19362. CrossRefGoogle Scholar
  29. 29.
    Shepherd JP, Koenitzer JW, Aragón R et al (1991) Heat capacity and entropy of nonstoichiometric magnetite Fe3(1−delta)O4: the thermodynamic nature of the Verwey transition. Phys Rev B 43:8461. CrossRefGoogle Scholar
  30. 30.
    Schmitz-Antoniak C, Schmitz D, Warland A et al (2016) Reversed ageing of Fe3O4 nanoparticles by hydrogen plasma. Sci Rep 6:2–7. CrossRefGoogle Scholar
  31. 31.
    Sangermano M, Allia P, Tiberto P et al (2013) Photo-cured epoxy networks functionalized with Fe3O4 generated by non-hydrolytic sol-gel process. Macromol Chem Phys 214:508–516. CrossRefGoogle Scholar
  32. 32.
    Niederberger M, Pinna N (2009) Metal Oxide nanoparticles in organic solvents synthesis, formation, assembly and application. Springer, BerlinCrossRefGoogle Scholar
  33. 33.
    Sciancalepore C, Rosa R, Barrera G et al (2014) Microwave-assisted nonaqueous sol-gel synthesis of highly crystalline magnetite nanocrystals. Mater Chem Phys 148:117–124CrossRefGoogle Scholar
  34. 34.
    Sciancalepore C, Bondioli F, Manfredini T, Gualtieri A (2015) Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis. Mater Charact 100:88–97. CrossRefGoogle Scholar
  35. 35.
    Xu R, Di Guida OA (2003) Comparison of sizing small particles using different technologies. Powder Technol 132:145–153. CrossRefGoogle Scholar
  36. 36.
    Sciancalepore C, Bondioli F, Messori M (2017) Non-hydrolytic sol–gel synthesis and reactive suspension method: an innovative approach to obtain magnetite–epoxy nanocomposite materials. J Sol-Gel Sci Technol 81:69–83. CrossRefGoogle Scholar
  37. 37.
    Barrera G, Sciancalepore C, Messori M et al (2017) Magnetite-epoxy nanocomposites obtained by the reactive suspension method: Microstructural, thermo-mechanical and magnetic properties. Eur Polym J 94:354–365. CrossRefGoogle Scholar
  38. 38.
    Chikazumi S (1997) Physics of ferromagnetism. Oxford University Press, OxfordGoogle Scholar
  39. 39.
    Lin C-R, Chiang R-K, Wang J-S, Sung T-W (2006) Magnetic properties of monodisperse iron oxide nanoparticles. J Appl Phys 99:08N710. CrossRefGoogle Scholar
  40. 40.
    Allia P, Barrera G, Tiberto P (2018) Linearized rate-equation approach for double-well systems: cooling- and temperature-dependent low-field magnetization of magnetic nanoparticles. Phys Rev B 98:134423. CrossRefGoogle Scholar
  41. 41.
    Uva M, Mencuccini L, Atrei A et al (2015) On the mechanism of drug release from polysaccharide hydrogels cross-linked with magnetite nanoparticles by applying alternating magnetic fields: the case of DOXO delivery. Gels 1:24–43. CrossRefGoogle Scholar
  42. 42.
    Ningthoujam RS, Vatsa RK, Prajapat CL et al (2010) Interaction between amorphous ferromagnetic Co–Fe–B particles in conducting silver matrix prepared by chemical reduction route. J Alloys Compd 492:40–43. CrossRefGoogle Scholar
  43. 43.
    Craco L, Laad MS, Müller-Hartmann E (2006) Verwey transition in Fe3O4 investigated using LDA + DMFT. Phys Rev B 74:064425. CrossRefGoogle Scholar
  44. 44.
    Abe K, Miyamoto Y, Chikazumi S (1976) Magnetocrystalline anisotropy of low temperature phase of magnetite. J Phys Soc Jpn 41:1894–1902CrossRefGoogle Scholar
  45. 45.
    Özdemir Ö (2000) Coercive force of single crystals of magnetite at low temperatures. Geophys J Int 141:351–356. CrossRefGoogle Scholar
  46. 46.
    Mercante LA, Melo WWM, Granada M et al (2012) Magnetic properties of nanoscale crystalline maghemite obtained by a new synthetic route. J Magn Magn Mater 324:3029–3033. CrossRefGoogle Scholar
  47. 47.
    Moskowitz BM, Banerjee SK (1979) Grain size limits for pseudosingle domain behavior in magnetite: implications for paleomagnetism. IEEE Trans Magn 15:1241–1246. CrossRefGoogle Scholar
  48. 48.
    Argyle KS, Dunlop DJ (1984) Theoretical domain structure in multidomain magnetite particles. Geophys Res Lett 11:185–188CrossRefGoogle Scholar
  49. 49.
    Kirschvink JL, Lowenstam HA (1979) Mineralization and magnetization of chiton teeth: paleomagnetic, sedimentologic, and biologic implications of organic magnetite. Earth Planet Sci Lett 44:193–204. CrossRefGoogle Scholar
  50. 50.
    Kakol Z, Honig JM (1989) Influence of deviations from ideal stoichiometry on the anisotropy parameters of magnetite Fe3(1-)O4. Phys Rev B 40:9090–9097. CrossRefGoogle Scholar
  51. 51.
    Reznıcek R, Chlan V, Stepankova H et al (1983) Magnetocrystalline anisotropy of magnetite. J Magn Magn Mater 31–34:813–814. Google Scholar
  52. 52.
    Usov NA, Peschany SE (1997) Theoretical hysteresis loops for single-domain particles with cubic anisotropy. J Magn Magn Mater 174:247–260. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Materials for Metrology and Life SciencesINRiMTurinItaly
  2. 2.National Interuniversity Consortium of Materials Science and TechnologyINSTMFlorenceItaly
  3. 3.Department of Engineering “Enzo Ferrari”University of Modena and ReggioModenaItaly
  4. 4.DISATPolitecnico di TorinoTurinItaly

Personalised recommendations