Advertisement

Journal of Materials Science

, Volume 54, Issue 11, pp 8492–8503 | Cite as

Low-voltage multicolor electroluminescence from all-inorganic carbon dots/Si-heterostructured light-emitting diodes

  • Xiaoming Mo
  • Qiuchun Lu
  • Tao Li
  • Xiaoma TaoEmail author
  • Chengjun Qi
  • Yulu Zhou
  • Qike Jiang
  • Yifang Ouyang
Electronic materials
  • 36 Downloads

Abstract

Low-voltage and multicolor electroluminescent light-emitting diodes (LEDs) based upon carbon dots (CDs) are demonstrated by using simple all-inorganic CDs/Si heterostructures. Electroluminescence (EL) originations of the CDs/Si LEDs are investigated clearly without the interference of commonly used organic semiconductors. Three distinct peaks at 438, 540, and 600 nm are achieved in the EL spectra of the CDs/Si LEDs, and they are found to only originate from the CDs. Addition of a PMMA polymer does not influence the EL originations, but improves the flatness of the CD active layer, thereby enhancing the EL performance of the CDs/Si LEDs. Most strikingly, the emission threshold voltage of such all-inorganic CDs/Si LEDs is as low as 3.4 V, which is the lowest onset voltage among the CDs-based LEDs by using fluorescent CDs as the active emitter. The ultra-low driving voltage proves the feasibility of the all-inorganic CDs/Si LEDs in the future multicolor solid-state lighting applications.

Notes

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 11504060, 51701201), Natural Science Foundation of Guangxi Zhuang Autonomous Region (Grant No. 2018GXNSFBA281163), Scientific Research Project for Higher Education of Guangxi Zhuang Autonomous Region (Grant No. KY2015ZD006), Doctoral Scientific Research Foundation of Guangxi University (Grant No. XBZ160084), and Young Teachers’ Innovation Training Project of Guangxi Bossco Environmental Protection Technology Co., Ltd. (Grant No. BRP180220).

Compliance with ethical standards

Conflicts of interest

The authors declare no competing conflicts of interest.

References

  1. 1.
    Choi H, Ko SJ, Choi Y, Joo P, Kim T, Lee BR, Jung JW, Choi HJ, Cha M, Jeong JR, Hwang IW, Song MH, Kim BS, Kim JY (2013) Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat Photonics 7:732–738CrossRefGoogle Scholar
  2. 2.
    Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, Jin H, Zhang K, Sun HC, Wang HY, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem 125:4045–4049CrossRefGoogle Scholar
  3. 3.
    Xu YH, Liu JQ, Gao CL, Wang EK (2014) Applications of carbon quantum dots in electrochemiluminescence: a mini review. Electrochem Commun 48:151–154CrossRefGoogle Scholar
  4. 4.
    Wang ZF, Yuan FL, Li XH, Li YC, Zhong HZ, Fan LZ, Yang SH (2017) 53% Efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv Mater 29:1702910CrossRefGoogle Scholar
  5. 5.
    Zhu JY, Bai X, Chen X, Xie ZF, Zhu YS, Pan GC, Zhai Y, Zhang HZ, Dong B, Song HW (2018) Carbon dots with efficient solid-state red-light emission through the step-by-step surface modification towards light-emitting diodes. Dalton Trans 47:3811–3818CrossRefGoogle Scholar
  6. 6.
    Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang HF, Luo PG, Yang H, Kose ME, Chen BL, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757CrossRefGoogle Scholar
  7. 7.
    Guo X, Wang CF, Yu ZY, Chen L, Chen S (2012) Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chem Commun 48:2692–2694CrossRefGoogle Scholar
  8. 8.
    Kwon W, Do S, Lee J, Hwang S, Kim JK, Rhee SW (2013) Freestanding luminescent films of nitrogen-rich carbon nanodots toward large-scale phosphor-based white-light-emitting devices. Chem Mater 25:1893–1899CrossRefGoogle Scholar
  9. 9.
    Chen QL, Wang CF, Chen S (2013) One-step synthesis of yellow-emitting carbogenic dots toward white light-emitting diodes. J Mater Sci 48:2352–2357.  https://doi.org/10.1007/s10853-012-7016-8 CrossRefGoogle Scholar
  10. 10.
    Sun C, Zhang Y, Wang Y, Liu WY, Kalytchuk S, Kershaw SV, Zhang TQ, Zhang XY, Zhao J, Yu WW, Rogach AL (2014) High color rendering index white light emitting diodes fabricated from a combination of carbon dots and zinc copper indium sulfide quantum dots. Appl Phys Lett 104:261106CrossRefGoogle Scholar
  11. 11.
    Wang Y, Kalytchuk S, Wang LY, Zhovtiuk O, Cepe K, Zboril R, Rogach AL (2015) Carbon dot hybrids with oligomeric silsesquioxane: solid-state luminophores with high photoluminescence quantum yield and applicability in white light emitting devices. Chem Commun 51:2950–2953CrossRefGoogle Scholar
  12. 12.
    Ma L, Xiang WD, Gao HH, Pei L, Ma X, Huang YY, Liang XJ (2015) Carbon dot-doped sodium borosilicate gel glasses with emission tunability and their application in white light emitting diodes. J Mater Chem C 3:6764–6770CrossRefGoogle Scholar
  13. 13.
    Tian Z, Zhang XT, Li D, Zhou D, Jing PT, Shen DZ, Qu SN, Zboril R, Rogach AL (2017) Full-color inorganic carbon dot phosphors for white-light-emitting diodes. Adv Optical Mater 5:1700416CrossRefGoogle Scholar
  14. 14.
    Zhu JY, Bai X, Zhai Y, Chen X, Zhu YS, Pan GC, Zhang HZ, Dong B, Song HW (2017) Carbon dots with efficient solid-state photoluminescence towards white light-emitting diodes. J Mater Chem C 5:11416–11420CrossRefGoogle Scholar
  15. 15.
    Wang JL, Zhang F, Wang YL, Yang YZ, Liu XG (2018) Efficient resistance against solid-state quenching of carbon dots towards white light emitting diodes by physical embedding into silica. Carbon 126:426–436CrossRefGoogle Scholar
  16. 16.
    Bhunia SK, Nandi S, Shikler R, Jelinek R (2016) Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis. Nanoscale 8:3400–3406CrossRefGoogle Scholar
  17. 17.
    Wang F, Chen YH, Liu CY, Ma DG (2011) White light-emitting devices based on carbon dots’ electroluminescence. Chem Commun 47:3502–3504CrossRefGoogle Scholar
  18. 18.
    Son DI, Kwon BW, Park DH, Seo WS, Yi Y, Angadi B, Lee CL, Choi WK (2012) Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat Nanotechnol 7:465–471CrossRefGoogle Scholar
  19. 19.
    Zhang XY, Zhang Y, Wang Y, Kalytchuk S, Kershaw SV, Wang YH, Wang P, Zhang TQ, Zhao Y, Zhang HZ, Cui T, Wang YD, Zhao J, Yu WW, Rogach AL (2013) Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano 7:11234–11241CrossRefGoogle Scholar
  20. 20.
    Yuan FL, Wang ZB, Li XH, Li YC, Tan ZA, Fan LZ, Yang SH (2017) Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv Mater 29:1604436CrossRefGoogle Scholar
  21. 21.
    Zhu JY, Bai X, Bai JL, Pan GC, Zhu YS, Zhai Y, Shao H, Chen X, Dong B, Zhang HZ, Song HW (2018) Emitting color tunable carbon dots by adjusting solvent towards lightemitting devices. Nanotechnology 29:085705CrossRefGoogle Scholar
  22. 22.
    Ding H, Yu SB, Wei JS, Xiong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491CrossRefGoogle Scholar
  23. 23.
    Tang LB, Ji RB, Cao XK, Lin JY, Jiang HX, Li XM, Teng KS, Luk CM, Zeng SJ, Hao JH, Lau SP (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6:5102–5110CrossRefGoogle Scholar
  24. 24.
    Qu D, Zheng M, Du P, Zhou Y, Zhang LG, Li D, Tan HQ, Zhao ZZ, Xie ZG, Sun ZC (2013) Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5:12272–12277CrossRefGoogle Scholar
  25. 25.
    Wang D, Wang ZY, Zhan QQ, Pu Y, Wang JX, Foster NR, Dai LM (2017) Facile and scalable preparation of fluorescent carbon dots for multifunctional applications. Engineering 3:402–408CrossRefGoogle Scholar
  26. 26.
    Fu M, Ehrat F, Wang Y, Milowska KZ, Reckmeier C, Rogach AL, Stolarczyk JK, Urban AS, Feldmann J (2015) Carbon dots: a unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett 15:6030–6035CrossRefGoogle Scholar
  27. 27.
    Feng TL, Zeng QS, Lu SY, Yan XJ, Liu JJ, Tao SY, Yang MX, Yang B (2018) Color-tunable carbon dots possessing solid-state emission for full-color light-emitting diodes applications. ACS Photonics 5:502–510CrossRefGoogle Scholar
  28. 28.
    Wu FS, Su HF, Zhu XJ, Wang K, Zhang ZF, Wong WK (2016) Near-infrared emissive lanthanide hybridized carbon quantum dots for bioimaging applications. J Mater Chem B 4:6366–6372CrossRefGoogle Scholar
  29. 29.
    Zhu XH, Xiao X, Zuo XX, Liang Y, Nan JM (2014) Hydrothermal preparation of photoluminescent graphene quantum dots characterized excitation-independent emission and its application as a bioimaging reagent. Part Part Syst Charact 31:801–809CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center on Nanoenergy Research, School of Physical Science and TechnologyGuangxi UniversityNanningPeople’s Republic of China
  2. 2.Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and TechnologyGuangxi UniversityNanningPeople’s Republic of China
  3. 3.Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianPeople’s Republic of China

Personalised recommendations