Journal of Materials Science

, Volume 54, Issue 13, pp 9945–9957 | Cite as

Quantum dots-reinforced luminescent silkworm silk with superior mechanical properties and highly stable fluorescence

  • Lan Cheng
  • Hongping Zhao
  • Huiming Huang
  • Bo Li
  • Robert K. Y. Li
  • Xi-Qiao FengEmail author
  • Fangyin DaiEmail author


Functional fluorescent silkworm silk holds promise for many important applications in biomedical engineering, optics, and photonics. However, it remains a challenge to obtain fluorescent silk in scale-up with both good mechanical properties and highly stable fluorescence simultaneously. In this work, we report a highly efficient strategy to produce fluorescent silk through directly feeding silkworm larvae with graphene quantum dots or CdSe/ZnS core–shell quantum dots. The obtained quantum dots-reinforced luminescent silkworm silk has superior mechanical strength and toughness, stable fluorescence, and good biocompatibility in comparison with the normal or fluorescent dye-colored silk. The strategy proposed in this work is environmental and economical and, also importantly, can generate superior luminescent silks in large scale. This study also provides possible cues for fabricating durable, fluorescent microdevices, and fabrics.



The authors acknowledge financial supports from the National Natural Science Foundation of China (Grant Nos. 31830094, 11372162 and 11432008), 863 Program (2013AA102507), and Funds of China Agriculture Research System (No. CARS-18).

Supplementary material

10853_2019_3469_MOESM1_ESM.docx (6.9 mb)
Supplementary material 1 (DOCX 7042 kb)


  1. 1.
    Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329(5991):528–531CrossRefGoogle Scholar
  2. 2.
    Tao H, Kaplan DL, Omenetto FG (2012) Silk materials: a road to sustainable high technology. Adv Mater 24(21):2824–2837CrossRefGoogle Scholar
  3. 3.
    Lin N, Cao L, Huang Q, Wang C, Wang Y, Zhou J, Liu XY (2016) Functionalization of silk fibroin materials at mesoscale. Adv Funct Mater 26(48):8885–8902CrossRefGoogle Scholar
  4. 4.
    Sidhu MS, Kumar B, Singh KP (2017) The processing and heterostructuring of silk with light. Nat Mater 16(9):938–945CrossRefGoogle Scholar
  5. 5.
    Song Y, Lin Z, Kong L, Xing Y, Lin N, Zhang Z, Chen BH, Liu XY (2017) Meso-functionalization of silk fibroin by upconversion fluorescence and near infrared in vivo biosensing. Adv Funct Mater. 27:1700628CrossRefGoogle Scholar
  6. 6.
    Rodriguez MJ, Brown J, Giordano J, Lin SJ, Omenetto FG, Kaplan DL (2017) Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments. Biomaterials 117:105–115CrossRefGoogle Scholar
  7. 7.
    Zhao H, Feng X, Yu S, Cui W, Zou F (2005) Mechanical properties of silkworm cocoons. Polymer 46(21):9192–9201CrossRefGoogle Scholar
  8. 8.
    Zhao H, Feng X, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90(7):073112CrossRefGoogle Scholar
  9. 9.
    Shao Z, Vollrath F (2002) Materials: surprising strength of silkworm silk. Nature 418(6899):741CrossRefGoogle Scholar
  10. 10.
    Mortimer B, Holland C, Vollrath F (2013) Forced reeling of Bombyx mori silk: separating behavior and processing conditions. Biomacromolecules 14(10):3653–3659CrossRefGoogle Scholar
  11. 11.
    Mortimer B, Guan J, Holland C, Porter D, Vollrath F (2015) Linking naturally and unnaturally spun silks through the forced reeling of Bombyx mori. Acta Biomater 11:247–255CrossRefGoogle Scholar
  12. 12.
    Wang Q, Wang C, Zhang M, Jian M, Zhang Y (2016) Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett 16(10):6695–6700CrossRefGoogle Scholar
  13. 13.
    Cheng L, Huang H, Chen S, Wang W, Dai F, Zhao H (2017) Characterization of silkworm larvae growth and properties of silk fibres after direct feeding of copper or silver nanoparticles. Mater Des 129:125–134CrossRefGoogle Scholar
  14. 14.
    Wang Q, Chen Q, Yang Y, Shao Z (2012) Effect of various dissolution systems on the molecular weight of regenerated silk fibroin. Biomacromolecules 14(1):285–289CrossRefGoogle Scholar
  15. 15.
    Xu S, Lin Y, Huang J, Li Z, Xu X, Zhang L (2013) Construction of high strength hollow fibers by self-assembly of a stiff polysaccharide with short branches in water. J Mater Chem A 1(13):4198–4206CrossRefGoogle Scholar
  16. 16.
    Zhang P, Lan J, Wang Y, Huang CZ (2015) Luminescent golden silk and fabric through in situ chemically coating pristine-silk with gold nanoclusters. Biomaterials 36:26–32CrossRefGoogle Scholar
  17. 17.
    Meng M, He H, Xiao J, Zhao P, Xie J, Lu Z (2016) Controllable in situ synthesis of silver nanoparticles on multilayered film-coated silk fibers for antibacterial application. J Colloid Interface Sci 461:369–375CrossRefGoogle Scholar
  18. 18.
    Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N et al (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21(1):52CrossRefGoogle Scholar
  19. 19.
    Wen H, Lan X, Zhang Y, Zhao T, Wang Y, Kajiura Z, Nakagaki M (2010) Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol Biol Rep 37(4):1815–1821CrossRefGoogle Scholar
  20. 20.
    Kim DW, Lee OJ, Kim S, Ki CS, Chao JR, Yoo H, Yoon S, Lee JE et al (2015) Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials 70:48–56CrossRefGoogle Scholar
  21. 21.
    Ling S, Li C, Jin K, Kaplan DL, Buehler MJ (2016) Liquid exfoliated natural silk nanofibrils: applications in optical and electrical devices. Adv Mater 28(35):7783–7790CrossRefGoogle Scholar
  22. 22.
    Min K, Kim S, Kim CG, Kim S (2017) Colored and fluorescent nanofibrous silk as a physically transient chemosensor and vitamin deliverer. Sci Rep 7:5448CrossRefGoogle Scholar
  23. 23.
    Xing Y, Shi C, Zhao J, Qiu W, Lin N, Wang J, Yan XB, Yu WD et al (2017) Mesoscopic-functionalization of silk fibroin with gold nanoclusters mediated by keratin and bioinspired silk synapse. Small 13(40):1702390CrossRefGoogle Scholar
  24. 24.
    Zhou Z, Shi Z, Cai X, Zhang S, Corder SG, Li X, Zhang Y, Zhang G et al (2017) The use of functionalized silk fibroin films as a platform for optical diffraction-based sensing applications. Adv Mater 29(15):1605471CrossRefGoogle Scholar
  25. 25.
    Chang SQ, Kang B, Dai YD, Chen D (2008) A novel route to synthesize CdS quantum dots on the surface of silk fibers via γ-radiation. Mater Lett 62(19):3447–3449CrossRefGoogle Scholar
  26. 26.
    Chang SQ, Dai YD, Kang B, Han W, Chen D (2009) γ-Radiation synthesis of silk fibroin coated CdSe quantum dots and their biocompatibility and photostability in living cells. J Nanosci Nanotechnol 9(10):5693–5700CrossRefGoogle Scholar
  27. 27.
    Nathwani BB, Jaffari M, Juriani AR, Mathur AB, Meissner KE (2009) Fabrication and characterization of silk-fibroin-coated quantum dots. IEEE Trans Nanobiosci 8(1):72–77CrossRefGoogle Scholar
  28. 28.
    Lin N, Hu F, Sun Y, Wu C, Xu H, Liu XY (2014) Construction of white-light-emitting silk protein hybrid films by molecular recognized assembly among hierarchical structures. Adv Funct Mater 24(33):5284–5290CrossRefGoogle Scholar
  29. 29.
    Lin N, Meng Z, Toh GW, Zhen Y, Diao Y, Xu H, Liu XY (2015) Engineering of fluorescent emission of silk fibroin composite materials by material assembly. Small 11(9–10):1205–1214CrossRefGoogle Scholar
  30. 30.
    Lu D, Zheng Z, Guo S, Wang C, Kaplan DL, Wang X (2015) Binding quantum dots to silk biomaterials for optical sensing. J Sens 2015:819373CrossRefGoogle Scholar
  31. 31.
    Zheng Z, Liu M, Guo S, Wu J, Lu D, Li G, Liu S, Wang X et al (2015) Incorporation of quantum dots into silk biomaterials for fluorescence imaging. J Mater Chem B 3(31):6509–6519CrossRefGoogle Scholar
  32. 32.
    Chu M, Liu G (2008) Fluorescent silkworm silk prepared via incorporation of green, yellow, red, and near-infrared fluorescent quantum dots. IEEE Trans Nanotechnol 7(3):308–315CrossRefGoogle Scholar
  33. 33.
    Tang B, Li J, Hou X, Afrin T, Sun L, Wang X (2013) Colorful and antibacterial silk fiber from anisotropic silver nanoparticles. Ind Eng Chem Res 52(12):4556–4563CrossRefGoogle Scholar
  34. 34.
    Xiao X, Liu X, Chen F, Fang D, Zhang C, Xia L, Xu W (2015) Highly anti-UV properties of silk fiber with uniform and conformal nanoscale TiO2 coatings via atomic layer deposition. ACS Appl Mater Interfaces 7(38):21326–21333CrossRefGoogle Scholar
  35. 35.
    Ali N, El-Khatib E, El-Mohamedy R, Ramadan M (2014) Antimicrobial activity of silk fabrics dyed with saffron dye using microwave heating. Int J Curr Microbiol Appl Sci 3(12):140–146Google Scholar
  36. 36.
    Chen W, Wang Z, Cui Z, Meng Z, Huang M, Pan D (2014) Study on coloration of silk based on coupling reaction with a diazonium compound. Fibers Polym 15(5):966–970CrossRefGoogle Scholar
  37. 37.
    Kim DW, Lee OJ, Kim S-W, Ki CS, Chao JR, Yoo H, Yoon S-I, Lee JE et al (2015) Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials 70:48–56CrossRefGoogle Scholar
  38. 38.
    Liu J, David WCC, Ip DT, Li X, Li G, Wu X, Yue W, Zhang C et al (2009) High-level expression of orange fluorescent protein in the silkworm larvae by the Bac-to-Bac system. Mol Biol Rep 36(2):329–335CrossRefGoogle Scholar
  39. 39.
    Iizuka T, Sezutsu H, Tatematsu KI, Kobayashi I, Yonemura N, Uchino K, Nakajima K, Kojima K et al (2013) Colored fluorescent silk made by transgenic silkworms. Adv Funct Mater 23(42):5232–5239CrossRefGoogle Scholar
  40. 40.
    Tansil NC, Li Y, Koh LD, Peng TC, Win KY, Liu XY, Han MY (2011) The use of molecular fluorescent markers to monitor absorption and distribution of xenobiotics in a silkworm model. Biomaterials 32(36):9576–9583CrossRefGoogle Scholar
  41. 41.
    Tansil NC, Li Y, Teng CP, Zhang S, Win KY, Chen X, Liu XY, Han MY (2011) Intrinsically colored and luminescent silk. Adv Mater 23(12):1463–1466CrossRefGoogle Scholar
  42. 42.
    Tansil NC, Koh LD, Han MY (2012) Functional silk: colored and luminescent. Adv Mater 24(11):1388–1397CrossRefGoogle Scholar
  43. 43.
    Nisal A, Trivedy K, Mohammad H, Panneri S, Sen Gupta S, Lele A, Manchala R, Kumar NS et al (2013) Uptake of Azo dyes into silk glands for production of colored silk cocoons using a green feeding approach. ACS Sustain Chem Eng 2(2):312–317CrossRefGoogle Scholar
  44. 44.
    Li K, Zhao J, Zhang J, Ji J, Ma Y, Liu X, Xu H (2015) Direct in vivo functionalizing silkworm fibroin via molecular recognition. ACS Biomater Sci Eng 1(7):494–503CrossRefGoogle Scholar
  45. 45.
    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016CrossRefGoogle Scholar
  46. 46.
    Michalet X, Pinaud F, Bentolila L, Tsay J, Doose S, Li J, Sundaresan G, Wu A et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544CrossRefGoogle Scholar
  47. 47.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775CrossRefGoogle Scholar
  48. 48.
    Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14):1620–1636CrossRefGoogle Scholar
  49. 49.
    Zhao HP, Feng XQ, Shi HJ (2007) Variability in mechanical properties of Bombyx mori silk. Mater Sci Eng C 27(4):675–683CrossRefGoogle Scholar
  50. 50.
    Amiraliyan N, Nouri M, Kish MH (2010) Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats. Polym Sci Ser A 52(4):407–412CrossRefGoogle Scholar
  51. 51.
    Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738CrossRefGoogle Scholar
  52. 52.
    Luo Z, Qi G, Chen K, Zou M, Yuwen L, Zhang X, Huang W, Wang L (2016) Microwave-assisted preparation of white fluorescent graphene quantum dots as a novel phosphor for enhanced white-light-emitting diodes. Adv Funct Mater 26(16):2739–2744CrossRefGoogle Scholar
  53. 53.
    Ling S, Qi Z, Knight DP, Shao Z, Chen X (2011) Synchrotron FTIR microspectroscopy of single natural silk fibers. Biomacromolecules 12(9):3344–3349CrossRefGoogle Scholar
  54. 54.
    Hipparagi SA, Srinivasa T, Das B, Naik SV, Purushotham SP (2016) Studies on application of aroma finish on silk fabric. J Inst Eng India Ser E 97(2):159–165CrossRefGoogle Scholar
  55. 55.
    Shahid M, Cheng XW, Tang RC, Chen G (2017) Silk functionalization by caffeic acid assisted in situ generation of silver nanoparticles. Dyes Pigments 137:277–283CrossRefGoogle Scholar
  56. 56.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J et al (2003) Silk-based biomaterials. Biomaterials 24(3):401–416CrossRefGoogle Scholar
  57. 57.
    Chen X, Hou D, Wang L, Zhang Q, Zou J, Sun G (2015) Antibacterial surgical silk sutures using a high-performance slow-release carrier coating system. ACS Appl Mater Interfaces 7(40):22394–22403CrossRefGoogle Scholar
  58. 58.
    Wang F, Shao J (2014) Modified Weibull distribution for analyzing the tensile strength of bamboo fibers. Polymers 6(12):3005–3018CrossRefGoogle Scholar
  59. 59.
    Xia ZP, Yu JY, Cheng LD, Liu LF, Wang WM (2009) Study on the breaking strength of jute fibres using modified Weibull distribution. Compos Part A Appl Sci Manuf 40(1):50–59CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, College of Textile and GarmentSouthwest UniversityChongqingChina
  2. 2.Institute of Biomechanics and Medical EngineeringTsinghua UniversityBeijingChina
  3. 3.Department of Materials Science and EngineeringCity University of Hong KongKowloonHong Kong

Personalised recommendations