Journal of Materials Science

, Volume 54, Issue 11, pp 8542–8555 | Cite as

Enhancement of photocurrent in Cu2ZnSnS4 quantum dot-anchored multi-walled carbon nanotube for solar cell application

  • Sonali Das
  • Kadambinee Sa
  • Injamul Alam
  • Pitamber MahanandiaEmail author
Energy materials


Photoconductivity of kesterite CZTS (Cu2ZnSnS4) quantum dots (QDs) anchored on multi-walled carbon nanotubes (MWCNTs) hybrid nanostructures has been investigated here, which take the advantages of both CZTS QDs and MWCNTs. The objective material CZTS QDs-anchored MWCNTs hybrid nanostructure have been prepared by a simple solution casting approach without doing any surface modifications. As-prepared MWCNTs, CZTS QDs and CZTS QDs–MWCNTs hybrid nanostructure have been characterized by XRD, Raman, FTIR, XPS, FESEM and TEM, and UV–visible spectroscopy. The improved optical gain of CZTS QDs–MWCNTs has been observed by UV–visible spectroscopy analysis. Other characterizations and TEM micrographs confirmed the adherence of CZTS QDs on MWCNTs. The photoconductivity of the above prepared hybrid nanostructure has been measured both in dark and under illumination (1.5G solar simulator). The hybrid nanostructure demonstrated improved photocurrent compared to bare CZTS QDs and MWCNTs. The obtained improved photocurrent is due to high optical gain by CZTS QDs and fast charge carrier transport by MWCNTs throughout in the hybrid nanostructure. The enhanced photocurrent and the stability of the CZTS–MWCNTs hybrid nanostructure ensure a possible application in future solar cell.



The authors acknowledge financial support by DST/INSPIRE Fellowship/2016/IF160157.

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interest.


  1. 1.
    Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, New YorkGoogle Scholar
  2. 2.
    Chen P, Wu X, Sun X, Lin J, Ji W, Tan KL (1999) Electronic structure and optical limiting behavior of carbon nanotubes. Phys Rev Lett 82:2548–2551CrossRefGoogle Scholar
  3. 3.
    Collins PG, Avouris P (2000) Nanotubes for electronics. Sci Am 283:62–69CrossRefGoogle Scholar
  4. 4.
    Ma YZ, Stenger J, Zimmermann J, Bachilo SM, Smalley RE, Weisman RB, Fleming GR (2004) Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy. J Chem Phys 120:3368–3373CrossRefGoogle Scholar
  5. 5.
    Kharisov BI, Kharissova OV, Mendez UO, Fuente IGDL (2015) Decoration of carbon nanotubes with metal nanoparticles: recent trends. Synth React Inorg Met-Org Nano-Met Chem 46:55–76CrossRefGoogle Scholar
  6. 6.
    Satishkumar BC, Vogl EM, Govindaraj A, Rao CNR (1996) The decoration of carbon nanotubes by metal nanoparticles. J Phys D Appl Phys 29:31–73CrossRefGoogle Scholar
  7. 7.
    Ang LM, Hor TSA, Xu GQ, Tung CH, Zhao SP, Wang JLS (2000) Decoration of activated carbon nanotubes with copper and nickel. Carbon 38:363–372CrossRefGoogle Scholar
  8. 8.
    Quinn BM, Dekker C, Lemay SG (2005) Electrodeposition of noble metal nanoparticles on carbon nanotubes. J Am Chem Soc 127:6146–6147CrossRefGoogle Scholar
  9. 9.
    Banerjee S, Wong SS (2002) Synthesis and characterization of carbon nanotube−nanocrystal heterostructures. Nano Lett 2:195–200CrossRefGoogle Scholar
  10. 10.
    Das A, Hall E, Wai CM (2014) Noncovalent attachment of PbS quantum dots to single- and multiwalled carbon nanotubes. J Nanotechnol Article ID 285857Google Scholar
  11. 11.
    Haremza JM, Hahn MA, Krauss TD (2002) Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes. Nano Lett 2:1253–1258CrossRefGoogle Scholar
  12. 12.
    Robel I, Bunker BA, Kamat PV (2005) Single-walled carbon nanotube–CdS nanocomposites as light-harvesting assemblies: photoinduced charge transfer interactions. Adv Mater 17:2458–2463CrossRefGoogle Scholar
  13. 13.
    Ma PC, Tang BZ, Kim JK (2008) Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT polymer composites. Carbon 46:1497–1505CrossRefGoogle Scholar
  14. 14.
    Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRefGoogle Scholar
  15. 15.
    Alivisatos AP (1996) Semiconductor clusters, nanocrystals and quantum dots. Science 271:933–937CrossRefGoogle Scholar
  16. 16.
    Li X, Jia Y, Cao A (2010) Tailored single-walled carbon nanotube-CdS nanoparticle hybrids for tunable optoelectronic devices. ACS Nano 4:506–512CrossRefGoogle Scholar
  17. 17.
    Choi JH, Nguyen FT, Barone PW, Heller DA, Moll AE, Patel D, Boppart SA, Strano MS (2007) Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett 7:861–867CrossRefGoogle Scholar
  18. 18.
    Aimin Y, Wang Q, Yong J, Mahona JP, Malherbe F, Wang F, Zhang H, Wang J (2012) Silver nanoparticle-carbon nanotube hybrid films: preparation and electrochemical sensing. Electrochim Acta 74:111–116CrossRefGoogle Scholar
  19. 19.
    Huang HC, Barua S, Sharma G, Dey SK, Rege K (2011) Inorganic nanoparticles for cancer imaging and therapy. J Controll Release 155:344–357CrossRefGoogle Scholar
  20. 20.
    Yang W, Liu X, Yue X, Jia J, Guo S (2015) Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J Am Chem Soc 137:1436–1439CrossRefGoogle Scholar
  21. 21.
    Ahn HJ, Moon WJ, Seong TY, Wang D (2009) Three-dimensional nanostructured carbon nanotube array/PtRu nanoparticle electrodes for micro-fuel cells. Electrochem Commun 11:635–643CrossRefGoogle Scholar
  22. 22.
    Kim HS, Lee H, Han KS, Kim JH, Song MS, Park MS, Lee JY, Kang JK (2005) Hydrogen storage in Ni nanoparticle-dispersed multiwalled carbon nanotubes. J Phys Chem B 109:8983–8986CrossRefGoogle Scholar
  23. 23.
    Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753CrossRefGoogle Scholar
  24. 24.
    Yuan CT, Wang YG, Huang KY, Chen TY, Yu P, Tang J, Sitt A, Banin U, Oded M (2012) Single-particle studies of band alignment effects on electron transfer dynamics, from semiconductor hetero-nanostructures to single-walled carbon nanotubes. ACS Nano 6:176–182CrossRefGoogle Scholar
  25. 25.
    Jeong SY, Lim SC, Bae DJ, Lee YH, Shin HJ, Yoon SM, Choi JY, Cha OH, Jeong MS, Perello D, Yun M (2008) Photocurrent of CdSe nanocrystals on single-walled carbon nanotube-field effect transistor. Appl Phys Lett 92:243103–243106CrossRefGoogle Scholar
  26. 26.
    Landi BJ, Castro SL, Ruf HJ, Evans CM, Bailey SG, Raffaelle RP (2005) CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol Energy Mater Sol Cells 87:733–746CrossRefGoogle Scholar
  27. 27.
    Khia LSH, Basnar B, Willner I (2005) Efficient generation of pohotocurrents by using CdS/carbon nanotube assemblies on electrodes. Angew Chem Int Ed 44:78–83CrossRefGoogle Scholar
  28. 28.
    Dutta M, Jana S, Basak D (2010) Quenching of photoluminescence in ZnO QDs decorating multiwalled carbon nanotubes. Chem Phys Chem 11:1774–1779CrossRefGoogle Scholar
  29. 29.
    Tanaka K, Oonuki M, Moritake N, Uchiki H (2009) Cu2ZnSnS4 thin film solar cells prepared by nonvacuum processing. Sol Energy Mater Sol Cells 93:583–587CrossRefGoogle Scholar
  30. 30.
    Katagiri H, Saitoh K, Washio T, Shinohara H, Kurumadani T, Miyajima S (2001) Development of thin film solar cell based on Cu2ZnSnS4 thin films. Sol Energy Mater Sol Cells 65:141–148CrossRefGoogle Scholar
  31. 31.
    Qu Y, Zoppi G, Beattie NS (2016) The role of nanoparticle inks in determining the performance of solution processed Cu2ZnSn(S, Se)4 thin film solar cells. Prog Photovolt Res Appl 24:836–845CrossRefGoogle Scholar
  32. 32.
    Wang J, Zhang P, Song X, Gao L (2014) Cu2ZnSnS4 thin films: spin coating synthesis and photo electrochemistry. RSC Adv 4:21318–21324CrossRefGoogle Scholar
  33. 33.
    Wang J, Zhang P, Song X, Gao L (2014) Surfactant-free hydrothermal synthesis of Cu2ZnSnS4(CZTS) nanocrystals with photocatalytic properties. RSC Adv 4:27805–27810CrossRefGoogle Scholar
  34. 34.
    Wang J, Yu N, Zhang Y, Zhu Y, Fu L, Zhang P, Gao L, Wu Y (2016) Synthesis and performance of Cu2ZnSnS4 semiconductor as photocathode for solar water splitting. J Alloys Compd 688:923–932CrossRefGoogle Scholar
  35. 35.
    Zeng X, Xiong D, Zhang W, Ming L, Xu Z, Huang Z, Wang M, Chen W, Cheng YB (2013) Spray deposition of water-soluble multiwall carbon nanotube and Cu2ZnSnSe4 nanoparticle composites as highly efficient counter electrodes in a quantum dot sensitized solar cell system. Nanoscale 5:6992–7000CrossRefGoogle Scholar
  36. 36.
    Nemala SS, Mokurala K, Bhargava P, Mallick S (2016) Cu2ZnSnS4/CNT composites as Pt free counter electrodes for dye sensitized solar cells with improved efficiency. Mater Today: Proc 3:1808–1814Google Scholar
  37. 37.
    Chen H, Wang J, Jia C, Mou J, Zhu L (2017) Highly efficient dye-sensitized solar cell with a novel nano hybrid film of Cu2ZnSnS4-MWCNTs as counter electrode. Appl Surf Sci 422:591–596CrossRefGoogle Scholar
  38. 38.
    Das S, Sa K, Alam I, Mahakul PC, Raiguru J, Subramanyam BVRS, Mahanandia P (2018) Synthesis and characterizations of Cu2ZnSnS4 nanoparticles/carbon nanotube composite as an efficient absorber material for solar cell application. AIP Conf Proc 1961:020006–020012CrossRefGoogle Scholar
  39. 39.
    Darvishzadeh P, Sohrabpoor H, Gorji NE (2016) Numerical device simulation of carbon nanotube contacted CZTS solar cells. Opt Quant Electron 48:480–486CrossRefGoogle Scholar
  40. 40.
    Bell JN, Yun Ng H, Du A, Coster H, Smith CS, Amal R (2011) Understanding the enhancement in photoelectrochemical properties of photocatalytically Prepared TiO2-reduced graphene oxide composite. J Phys Chem C 115:6004–6009CrossRefGoogle Scholar
  41. 41.
    Zhang H, Xie A, Wan C, Wang H, Shen Y, Tian X (2013) Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption. J Mater Chem A 1:8547–8552CrossRefGoogle Scholar
  42. 42.
    Luo PQ, Yu YX, Le XB, Chen YH, Kuang BD, Su YC (2012) Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J Phys Chem C 116:8111–8117CrossRefGoogle Scholar
  43. 43.
    Das S, Sa K, Alam I, Mahanandia P (2018) Synthesis of CZTS QDs decorated reduced graphene oxide nanocomposite as possible absorber for solar cell. Mater Lett 232:232–236CrossRefGoogle Scholar
  44. 44.
    Pang Z, Wei A, Zhao Y, Liu J, Tao L, Xiao Y, Yang Y, Luo D (2017) Direct growth of Cu2ZnSnS4 on three-dimensional porous reduced graphene oxide thin films as counter electrode with high conductivity and excellent catalytic activity for dye-sensitized solar cells. J Mater Sci Energy Mater 53:2748–2757Google Scholar
  45. 45.
    Das S, Alam I, Raiguru J, Subramanyam BVRS, Mahanandia P (2018) A facile method to synthesize CZTS quantum dots for solar cell applications. Physica E 105:19–24CrossRefGoogle Scholar
  46. 46.
    Mahanandia P, Nanda KK (2008) A one-step technique to prepare aligned arrays of carbon nanotubes. Nanotechnology 19:155602–155609CrossRefGoogle Scholar
  47. 47.
    Mahanandia P, Vishwakarma PN, Nanda KK, Prasada V, Barai K, Mondal AK, Sarangid S, Deye GK, Subramanyama SV (2008) Synthesis of multi-wall carbon nanotubes by simple pyrolysis. Solid State Commun 145:143–148CrossRefGoogle Scholar
  48. 48.
    Park HK, Kim DK, Kim CH (1997) Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4. J Am Ceram Soc 80:743–749CrossRefGoogle Scholar
  49. 49.
    Burton AW, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater 117:75–90CrossRefGoogle Scholar
  50. 50.
    Kim UJ, Furtado CA, Eklund PC (2005) Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J Am Chem Soc 127:15437–15445CrossRefGoogle Scholar
  51. 51.
    Gorai S, Ganguli D, Chaudhuri S (2005) Synthesis of copper sulfides of varying morphologies and stoichiometries controlled by chelating and nonchelating solvents in a solvothermal process. Cryst Growth Des 5:875–877CrossRefGoogle Scholar
  52. 52.
    Osswald S, Flahaut E, Ye H, Gogotsi Y (2005) Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation. Chem Phys Lett 402:422–429CrossRefGoogle Scholar
  53. 53.
    Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99CrossRefGoogle Scholar
  54. 54.
    Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840CrossRefGoogle Scholar
  55. 55.
    Chen CS, Xie XD, Liu TG, Lin LW, Kuang JC, Xie XL, Lu LJ, Cao SY (2012) Multi-walled carbon nanotubes supported Cu-doped ZnO nanoparticles and their optical property. J Nanopart Res 14:817–822CrossRefGoogle Scholar
  56. 56.
    Arul NS, Yun DY, Lee DU, Kim TW (2013) Strong quantum confinement effects in kesterite Cu2ZnSnS4 nanospheres for organic optoelectronic cells. Nanoscale 5:11940–11943CrossRefGoogle Scholar
  57. 57.
    Wang X, Li M, Chang Z, Wang Y, Chen B, Zhang L, Wu Y (2015) Orientated Co3O4 nanocrystals on MWCNTs as superior battery-type positive electrode material for a hybrid capacitor. J Electrochem Soc 162:A1966–A1971CrossRefGoogle Scholar
  58. 58.
    Wang X, Li M, Chang Z, Yang Y, Wu Y, Liu X (2015) Co3O4@MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors. ACS Appl Mater Interfaces 7:2280–2285CrossRefGoogle Scholar
  59. 59.
    Batmunkh M, Shearer JC, Bat-Erdene M, Biggs JM, Shapter GJ (2017) Single-walled carbon nanotubes enhance the efficiency and stability of mesoscopic perovskite solar cells. ACS Appl Mater Interfaces 9:19945–19954CrossRefGoogle Scholar
  60. 60.
    Goutam JP, Singh KD, Giri KP, Iyer KP (2011) Enhancing the photostability of poly(3-hexylthiophene) by preparing composites with multiwalled carbon nanotubes. J Phys Chem B 115:919–924CrossRefGoogle Scholar
  61. 61.
    Guldi DM, Rahman GMA, Jux N, Tagmatarchis N, Prato M (2004) Integrating single-wall carbon nanotubes into donor–acceptor nanohybrids. Angew Chem Int Ed Engl 43:5526–5530CrossRefGoogle Scholar
  62. 62.
    Fowler PW, Ceulemans A (1995) Electron deficiency of the fullerenes. J Phys Chem 99:508–510CrossRefGoogle Scholar
  63. 63.
    Fowler PW (1990) Carbon cylinders: a class of closed-shell clusters. J Chem Soc Faraday Trans 86:2073–2077CrossRefGoogle Scholar
  64. 64.
    Robel I, Bunker BA, Kamat PV (2005) Single-walled carbon nanotube–CdS nanocomposites as light-harvesting assemblies: photoinduced charge transfer interactions. Adv Mater 17:2458–2463CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyNational Institute of TechnologyRourkelaIndia

Personalised recommendations