Advertisement

Journal of Materials Science

, Volume 54, Issue 10, pp 7883–7892 | Cite as

Direct writing alginate bioink inside pre-polymers of hydrogels to create patterned vascular networks

  • Yongkang Wang
  • Xiaobo HuangEmail author
  • Yi Shen
  • Ruiqiang Hang
  • Xiangyu Zhang
  • Yueyue Wang
  • Xiaohong Yao
  • Bin Tang
Materials for life sciences
  • 295 Downloads

Abstract

We describe a strategy to fabricate a hydrogel-based microvascular construct by direct writing alginate bioink inside the viscous pre-polymer of hydrogels, which acts as a support bath. As the print needle translates through the polymers, the extruded alginate instantaneously forms calcium alginate hydrogel (Ca-Alg) templates deposited within the bath. This phase change allows the formed templates to be anchored within the pre-polymers, while maintaining their structure. After the printing process, the pre-polymers are solidified to form a mechanically robust hydrogel. Finally, a hydrogel construct with embedded microchannels is generated by liquefying and removing the Ca-Alg templates. Using this method, not only the alginate ink alone can be directly printed within the engineered constructs, but also the size and shape of the formed microchannels are controllable. Furthermore, a confluent endothelial layer for the generation of vascular networks can be constructed by adhering and proliferating endothelial cells on the channel linings. This strategy demonstrates a promising technique for rapid construction of in vitro vasculatures, which would provide a versatile platform for a wide array of applications such as tissue engineering, organ-on-a-chip and drug screening.

Notes

Acknowledgements

This work was supported by the Chinese Government Scholarship (No. 201508140048), National Natural Science Foundation of China (31300808), and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (201417 and 201626).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

10853_2019_3447_MOESM1_ESM.docx (4.1 mb)
Supplementary material 1 (DOCX 4223 kb)

References

  1. 1.
    Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63(4):300–311CrossRefGoogle Scholar
  2. 2.
    Young EWK (2013) Advances in microfluidic cell culture systems for studying angiogenesis. J Lab Autom 18(6):427–436CrossRefGoogle Scholar
  3. 3.
    Zhang B, Montgomery M, Chamberlain MD, Ogawa S, Korolj A, Pahnke A, Wells LA, Massé S, Kim J, Reis L, Momen A, Nunes SS, Wheeler AR, Nanthakumar K, Keller G, Sefton MV, Radisic M (2016) Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat Mater 15(6):669–678CrossRefGoogle Scholar
  4. 4.
    Arnaoutova I, Kleinman HK (2010) In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc 5(4):628–635CrossRefGoogle Scholar
  5. 5.
    Uda Y, Hirano T, Son G, Iimuro Y, Uyama N, Yamanaka J, Mori A, Arii S, Fujimoto J (2013) Angiogenesis is crucial for liver regeneration after partial hepatectomy. Surgery 153(1):70–77CrossRefGoogle Scholar
  6. 6.
    Memic A, Aldhahri M, Tamayol A, Mostafalu P, Abdel-wahab MS, Samandari M, Moghaddam KM, Annabi N, Bencherif SA, Khademhosseini A (2017) Nanofibrous silver-coated polymeric scaffolds with tunable electrical properties. Nanomaterials 7(3):63–73CrossRefGoogle Scholar
  7. 7.
    Hasan A, Paul A, Vrana NE, Zhao X, Memic A, Hwang Y, Dokmeci MR, Khademhosseini A (2014) Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 35(26):7308–7325CrossRefGoogle Scholar
  8. 8.
    Liu WJ, Zhang YS, Heinrich MA, Ferrari FD, Jang HL, Bakht SM, Alvarez M, Yang JZ, Li YC, Santiago GT, Miri AK, Zhu K, Khoshakhlagh P, Prakash G, Cheng H, Guan XF, Zhong Z, Ju J, Zhu GH, Jin X, Shin SR, Dokmeci MR, Khademhosseini A (2017) Rapid continuous multimaterial extrusion bioprinting. Adv Mater 29(3):1604630CrossRefGoogle Scholar
  9. 9.
    Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68CrossRefGoogle Scholar
  10. 10.
    Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DHT, Cohen DM, Toro E, Chen AA, Galie PA, Yu X, Chaturvedi R, Bhatia SN, Chen CS (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768–774CrossRefGoogle Scholar
  11. 11.
    Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130CrossRefGoogle Scholar
  12. 12.
    Miri AK, Nieto D, Iglesias L, Hosseinabadi HG, Maharjan S, Ruiz-Esparza GU, Khoshakhlagh P, Manbachi A, Dokmeci MR, Chen S, Shin SR, Zhang YS, Khademhosseini A (2018) Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv Mater 30(27):1800242CrossRefGoogle Scholar
  13. 13.
    Skardal A, Murphy SV, Devarasetty M, Mead L, Kang HW, Seol YJ, Zhang YS, Shin SR, Zhao L, Aleman J, Hall AR, Shupe TD, Kleensang A, Dokmeci MR, Lee SJ, Jackson JD, Yoo JJ, Hartung T, Khademhosseini A, Soker S, Bishop CE, Atala A (2017) Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep 7(1):8837–8852CrossRefGoogle Scholar
  14. 14.
    Vollert I, Seiffert M, Bachmair J, Sander M, Eder A, Conradi L, Vogelsang A, Schulze T, Uebeler J, Holnthoner W, Redl H, Reichenspurner H, Hansen A, Eschenhagen T (2014) In vitro perfusion of engineered heart tissue through endothelialized channels. Tissue Eng Part A 20(3–4):854–863Google Scholar
  15. 15.
    Hammer J, Han LH, Tong X, Yang F (2014) A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering. Tissue Eng Part C: Methods 20(2):169–176CrossRefGoogle Scholar
  16. 16.
    Wang XY, Jin ZH, Gan BW, Lv SW, Xie M, Huang WH (2014) Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template. Lab Chip 14(15):2709–2716CrossRefGoogle Scholar
  17. 17.
    Tabriz AG, Hermida MA, Leslie NR, Shu W (2015) Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication 7(4):045012CrossRefGoogle Scholar
  18. 18.
    Highley CB, Rodell CB, Burdick JA (2015) Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv Mater 27(34):5075–5079CrossRefGoogle Scholar
  19. 19.
    Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, Ramadan MH, Hudson AR, Feinberg AW (2015) Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv 1(9):e1500758CrossRefGoogle Scholar
  20. 20.
    Yue K, Liu Y, Byambaa B, Singh V, Liu W, Li X, Sun Y, Zhang YS, Tamayol A, Zhang P, Ng KW, Annabi N, Khademhosseini A (2018) Visible light crosslinkable human hair keratin hydrogels. Bioeng Transl Med 3(1):37–48CrossRefGoogle Scholar
  21. 21.
    Zhao X, Sun X, Yildirimer L, Lang Q, Lin ZYW, Zheng R, Zhang Y, Cui W, Annabi N, Khademhosseini A (2017) Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater 49:66–77CrossRefGoogle Scholar
  22. 22.
    Zhang YS, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht SM, Yang J, Jia W, Dell’Erba V, Assawes P, Shin SR, Dokmeci MR, Oklu R, Khademhosseini A (2017) 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng 45(1):148–163CrossRefGoogle Scholar
  23. 23.
    Cheng H, Chabok R, Guan X, Chawla A, Li Y, Khademhosseini A, Jang HL (2018) Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells. Acta Biomater 69:342–351CrossRefGoogle Scholar
  24. 24.
    Jang J, Seol YJ, Kim HJ, Kundu J, Kim SW, Kundu J, Cho DW (2014) Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering. J Mech Behav Biomed Mater 37:69–77CrossRefGoogle Scholar
  25. 25.
    Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23(24):H178–H183CrossRefGoogle Scholar
  26. 26.
    Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian EK, Nuutila K, Giatsidis G, Mostafalu P, Derakhshandeh H, Yue K, Swieszkowski W, Memic A, Tamayol A, Khademhosseini A (2018) Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev 127:138–166CrossRefGoogle Scholar
  27. 27.
    Liu W, Heinrich MA, Zhou Y, Akpek A, Hu N, Liu X, Guan X, Zhong Z, Jin X, Khademhosseini A, Zhang YS (2017) Extrusion bioprinting of shear-thinning gelatin methacryloyl bioinks. Adv Healthc Mater 6(12):1601451CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Material Science and EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations