Journal of Materials Science

, Volume 54, Issue 11, pp 8381–8400 | Cite as

Landau–Devonshire thermodynamic potentials for displacive perovskite ferroelectrics from first principles

  • Krishna Chaitanya PitikeEmail author
  • Nasser Khakpash
  • John Mangeri
  • George A. RossettiJr.
  • Serge M. NakhmansonEmail author
Computation and theory


A general approach for fitting Landau–Devonshire thermodynamic potentials directly from first principles is developed for simple displacive ferroelectric perovskite materials. As the first step, a \(\hbox {PbTiO}_3\) potential is parameterized completely from density functional theory calculations as a test case, under the only assumption that the transition between the non-polar and polar phases is of first order. The utility of this approach is assessed by comparing quantities characterizing the phase transition, dielectric and piezoelectric properties and equibiaxial strain–temperature phase diagrams with the predictions of several thermodynamic potentials parameterized from experimental data. In the second step, a similar parameterization is generated for a fictitious polar perovskite \(\hbox {SnTiO}_{3}\), enabling us to predictively evaluate an approximate ‘equibiaxial strain–temperature–spontaneous polarization’ phase diagram for its thin films.



The authors acknowledge partial support from the National Science Foundation (DMR 1309114). KCP is grateful to Neha Gadigi for help with coding and to S. Pamir Alpay, and Valentino R. Cooper for useful discussions.

Supplementary material

10853_2019_3439_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (pdf 1644 KB)


  1. 1.
    Laughlin RB, Pines D, Schmalian J, Stojković BP, Wolynes P (2000) The middle way. PNAS 97:32Google Scholar
  2. 2.
    Crabtree G, Sarrao J (2012) Opportunities for mesoscale science. MRS Bull. 37:1079Google Scholar
  3. 3.
    Sarrao J, Crabtree G (2015) Progress in mesoscale science. MRS Bull. 40:919Google Scholar
  4. 4.
    Provatas N, Elder K (2010) Phase-Field methods in materials science and engineering. Wiley, New YorkGoogle Scholar
  5. 5.
    Mangeri J et al (2017) Topological phase transformations and intrinsic size effects in ferroelectric nanoparticles. Nanoscale 9:1616Google Scholar
  6. 6.
    Mangeri J, Alpay SP, Nakhmanson S, Heinonen OG (2018) Electromechanical control of polarization vortex ordering in an interacting ferroelectric-dielectric composite dimer. Appl Phys Lett 113:092901Google Scholar
  7. 7.
    Pitike KC et al (2018) Metastable vortex-like polarization textures in ferroelectric nanoparticles of different shapes and sizes. J Appl Phys 124:064104Google Scholar
  8. 8.
    Weiss CV et al (2009) Compositionally graded ferroelectric multilayers for frequency agile tunable devices. J Mater Sci 44:5364. Google Scholar
  9. 9.
    Sun F-C, Kesim MT, Espinal Y, Alpay SP (2016) Are ferroelectric multilayers capacitors in series? J Mater Sci 51:499. Google Scholar
  10. 10.
    Misirlioglu IB, Sen C, Kesim MT, Alpay SP (2016) Low-voltage ferroelectric-paraelectric superlattices as gate materials for field-effect transistors. J Mater Sci 51:487. Google Scholar
  11. 11.
    Landau L, Lifshitz E (1959) Statistical physics. Pergamon Press, OxfordGoogle Scholar
  12. 12.
    Devonshire A (1954) Theory of ferroelectrics. Adv Phys 3:85Google Scholar
  13. 13.
    Strukov BA, Levanyuk AP (1998) Ferroelectric phenomena in crystals, physical foundations. Springer, BerlinGoogle Scholar
  14. 14.
    Chen L-Q (2007) Appendix A—Landau free-energy coefficients. Springer, Berlin, pp 363–372Google Scholar
  15. 15.
    Salje E (1990) Phase transitions in ferroelastic and co-elastic crystals. Ferroelectrics 104:111Google Scholar
  16. 16.
    Amin A, Haun MJ, Badger B, McKinstry H, Cross LE (1985) A phenomenological Gibbs function for the single cell region of the \(\text{ PbZrO }_{3}:\text{ PbTiO }_{3}\) solid solution system. Ferroelectrics 65:107Google Scholar
  17. 17.
    Rossetti GA Jr, Cline JP, Navrotsky A (1998) Phase transition energetics and thermodynamic properties of ferroelectric \(\text{ PbTiO }_3\). J Mater Res 13:3197Google Scholar
  18. 18.
    Rossetti GA Jr, Maffei N (2005) Specificheat study and Landau analysis of the phase transition in\(\text{ PbTiO }_3\) single crystals. J Phys Condens Matter 17:3953Google Scholar
  19. 19.
    Haun MJ, Furman E, Jang SJ, McKinstry HA, Cross LE (1987) Thermodynamic theory of \(\text{ PbTiO }_3\). J Appl Phys 62:3331Google Scholar
  20. 20.
    Heitmann AA, Rossetti GA Jr (2014) Thermodynamics of ferroelectric solid solutions with morphotropic phase boundaries. J Am Ceram Soc 97:1661Google Scholar
  21. 21.
    Li YL, Hu SY, Liu ZK, Chen LQ (2001) Phase-field model of domain structures in ferroelectric thin films. Appl Phys Lett 78:3878Google Scholar
  22. 22.
    Li Y, Hu S, Liu Z, Chen L (2002) Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater 50:395Google Scholar
  23. 23.
    Wang J, Shi S-Q, Chen L-Q, Li Y, Zhang T-Y (2004) Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta Mater 52:749Google Scholar
  24. 24.
    Hong L, Soh A (2011) Unique vortex and stripe domain structures in \(\text{ PbTiO }_3\) epitaxial nanodots. Mech Mater 43:342Google Scholar
  25. 25.
    Marton P, Klíč A, Paściak M, Hlinka J (2017) First-principles-based Landau–Devonshire potential for \(\text{ BiFeO }_3\). Phys Revs B 96:174110Google Scholar
  26. 26.
    Hlinka J, Petzelt J, Kamba S, Noujni D, Ostapchuk T (2006) Infrared dielectric response of relaxor ferroelectrics. Phase Transit 79:41Google Scholar
  27. 27.
    Nakhmanson SM, Naumov I (2010) Goldstone-like states in a layered perovskite with frustrated polarization: A first-principles investigation of \(\text{ PbSr }_{2}\text{ Ti }_{2}\text{ O }_{7}\). Phys Rev Lett 104:097601Google Scholar
  28. 28.
    Mangeri J, Pitike KC, Alpay SP, Nakhmanson S (2016) Amplitudon and phason modes of electrocaloric energy interconversion. npj Comput Mater 2:16020Google Scholar
  29. 29.
    Zhang J, Heitmann AA, Alpay SP, Rossetti GA (2009) Electrothermal properties of perovskite ferroelectric films. J Mater Sci 44:5263. Google Scholar
  30. 30.
    Epstein RI, Malloy KJ (2009) Electrocaloric devices based on thin-film heat switches. J Appl Phys 106:064509Google Scholar
  31. 31.
    Alpay SP, Mantese J, Trolier-McKinstry S, Zhang Q, Whatmore RW (2014) Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion. Mater Res Bull 39:1099Google Scholar
  32. 32.
    Khassaf H, Patel T, Alpay SP (2017) Combined intrinsic elastocaloric and electrocaloric properties of ferroelectrics. J Appl Phys 121:144102Google Scholar
  33. 33.
    Matar S, Baraille I, Subramanian M (2009) First principles studies of \(\text{ SnTiO }_3\) perovskite as potential environmentally benign ferroelectric material. Chem Phys 355:43Google Scholar
  34. 34.
    Fix T, Sahonta S-L, Garcia V, MacManus-Driscoll JL, Blamire MG (2011) Structural and dielectric properties of \(\text{ SnTiO }_3\), a putative ferroelectric. Cryst Growth Des 11:1422Google Scholar
  35. 35.
    Parker WD, Rondinelli JM, Nakhmanson SM (2011) First-principles study of misfit strain-stabilized ferroelectric \(\text{ SnTiO }_3\). Phys Rev B 84:245126Google Scholar
  36. 36.
    Pitike KC, Parker WD, Louis L, Nakhmanson SM (2015) First-principles studies of lone-pair-induced distortions in epitaxial phases of perovskite \(\text{ SnTiO }_{3}\) and \(\text{ PbTiO }_{3}\). Phys Rev B 91:035112Google Scholar
  37. 37.
    Chang S et al (2016) Atomic layer deposition of environmentally benign \(\text{ SnTiO }_x\) as a potential ferroelectric material. J Vac Sci Technol A 34:01A119Google Scholar
  38. 38.
    Wang T et al (2016) Chemistry, growth kinetics, and epitaxial stabilization of \(\text{ Sn }^{2+}\) in Sn-doped \(\text{ SrTiO }_3\) using \((\text{ CH }_3)_{6}\text{ Sn }_2\) tin precursor. APL Mater 4:126111Google Scholar
  39. 39.
    Agarwal R et al (2018) Room-temperature relaxor ferroelectricity and photovoltaic effects in tin titanate directly deposited on a silicon substrate. Phys Rev B 97:054109Google Scholar
  40. 40.
    Cao W (1994) Polarization gradient coefficients and the dispersion surface of the soft mode in perovskite ferroelectrics. J Phys Soc Jpn 63:1156Google Scholar
  41. 41.
    Hlinka J, Marton P (2006) Phenomenological model of a \(90^\circ \) domain wall in \(\text{ BaTiO }_3\)-type ferroelectrics. Phys Rev B 74:104104Google Scholar
  42. 42.
    Pertsev NA, Zembilgotov AG, Tagantsev AK (1998) Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys Rev Lett 80:1988Google Scholar
  43. 43.
    Nye J (1985) Physical properties of crystals: their representation by tensors and matrices. Oxford Science Publications, Clarendon PressGoogle Scholar
  44. 44.
    Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15Google Scholar
  45. 45.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169Google Scholar
  46. 46.
    Giannozzi P et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502Google Scholar
  47. 47.
    Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048Google Scholar
  48. 48.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953Google Scholar
  49. 49.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758Google Scholar
  50. 50.
    Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892Google Scholar
  51. 51.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188Google Scholar
  52. 52.
    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515Google Scholar
  53. 53.
    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F (2006) Linear optical properties in the projector-augmented wave methodology. Phys Rev B 73:045112Google Scholar
  54. 54.
    Baroni S, Resta R (1986) Ab initio calculation of the macroscopic dielectric constant in silicon. Phys Rev B 33:7017Google Scholar
  55. 55.
    Nakhmanson SM, Rabe KM, Vanderbilt D (2005) Polarization enhancement in two- and three-component ferroelectric superlattices. Appl Phys Lett 87:102906Google Scholar
  56. 56.
    King-Smith RD, Vanderbilt D (1993) Theory of polarization of crystalline solids. Phys Rev B 47:1651Google Scholar
  57. 57.
    Resta R (1994) Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev Mod Phys 66:899Google Scholar
  58. 58.
    Yuk SF et al (2017) Towards an accurate description of perovskite ferroelectrics: exchange and correlation effects. Sci Rep 7:43482Google Scholar
  59. 59.
    Perdew JP et al (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671Google Scholar
  60. 60.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865Google Scholar
  61. 61.
    Perdew JP et al (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406Google Scholar
  62. 62.
    Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401Google Scholar
  63. 63.
    Thonhauser T et al (2007) Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys Rev B 76:125112Google Scholar
  64. 64.
    Cooper VR (2010) Van der Waals density functional: an appropriate exchange functional. Phys Rev B 81:161104Google Scholar
  65. 65.
    Bilc DI et al (2008) Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides. Phys Rev B 77:165107Google Scholar
  66. 66.
    Sepliarsky M, Phillpot SR, Wolf D, Stachiotti MG, Migoni RL (2000) Atomic-level simulation of ferroelectricity in perovskite solid solutions. Appl Phys Lett 76:3986Google Scholar
  67. 67.
    Sepliarsky M, Wu Z, Asthagiri A, Cohen RE (2004) Atomistic model potential for \(\text{ PbTiO }_3\) and PMN by fitting first principles results. Ferroelectrics 301:55Google Scholar
  68. 68.
    Sepliarsky M, Asthagiri A, Phillpot S, Stachiotti M, Migoni R (2005) Atomic-level simulation of ferroelectricity in oxide materials. Curr Opin Solid State Mater Sci 9:107Google Scholar
  69. 69.
    Sepliarsky M, Cohen RE (2011) First-principles based atomistic modeling of phase stability in PMN-\(x\)PT. J Phys Condens Matter 23:435902Google Scholar
  70. 70.
    Gindele O, Kimmel A, Cain MG, Duffy D (2015) Shell model force field for lead zirconate titanate \(\text{ Pb }(\text{ Zr }_{{\rm 1x}}\text{ Ti }_{{\rm x}})\text{ O }_{3}\). J Phys Chem C 119:17784Google Scholar
  71. 71.
    Cao W (2008) Constructing Landau–Ginzburg–Devonshire type models for ferroelectric systems based on symmetry. Ferroelectrics 375:28Google Scholar
  72. 72.
    Zheludev I, Shuvalov L (1956) Ferroelectric phase transitions and symmetry of crystals. Kristallografiya 1:681Google Scholar
  73. 73.
    Vanderbilt D, Cohen MH (2001) Monoclinic and triclinic phases in higher-order Devonshire theory. Phys Rev B 63:094108Google Scholar
  74. 74.
    Rignanese G-M, Gonze X, Pasquarello A (2001) First-principles study of structural, electronic, dynamical, and dielectric properties of zircon. Phys Rev B 63:104305Google Scholar
  75. 75.
    Rignanese G-M, Detraux F, Gonze X, Pasquarello A (2001) First-principles study of dynamical and dielectric properties of tetragonal zirconia. Phys Rev B 64:134301Google Scholar
  76. 76.
    Zhao X, Vanderbilt D (2002) Phonons and lattice dielectric properties of zirconia. Phys Rev B 65:075105Google Scholar
  77. 77.
    Fennie CJ, Rabe KM (2003) Structural and dielectric properties of \(\text{ Sr }_2\text{ TiO }_{4}\) from first principles. Phys Rev B 68:184111Google Scholar
  78. 78.
    Liu Z, Mei Z, Wang Y, Shang S (2012) Nature of ferroelectric-paraelectric transition. Philos Mag Lett 92:399Google Scholar
  79. 79.
    Pedregosa F et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825Google Scholar
  80. 80.
    Shirane G, Jona F (1962) Ferroelectric crystals. Pergamon Press, OxfordGoogle Scholar
  81. 81.
    Nishimatsu T, Iwamoto M, Kawazoe Y, Waghmare UV (2010) First-principles accurate total energy surfaces for polar structural distortions of \(\text{ BaTiO }_3\), \(\text{ PbTiO }_3\), and \(\text{ SrTiO }_3\) : Consequences for structural transition temperatures. Phys Rev B 82:134106Google Scholar
  82. 82.
    Le Page Y, Saxe P (2002) Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys Rev B 65:104104Google Scholar
  83. 83.
    Piskunov S, Heifets E, Eglitis RI, Borstel G (2004) Bulk properties and electronic structure of \(\text{ SrTiO }_3\), \(\text{ BaTiO }_3\), \(\text{ PbTiO }_3\) perovskites: an ab initio HF/DFT study. Comput Mater Sci 29:165Google Scholar
  84. 84.
    Taib MFM, Yaakob MK, Hassan OH, Yahya MZA (2013) Structural, electronic, and lattice dynamics of \(\text{ PbTiO }_{3}\), \(\text{ SnTiO }_{3}\), and \(\text{ SnZrO }_{3}\): a comparative first-principles study. Integr Ferroelectr 142:119Google Scholar
  85. 85.
    Jiang Z et al (2016) Electrostriction coefficient of ferroelectric materials from ab initio computation. AIP Adv 6:065122Google Scholar
  86. 86.
    Samara GA (1971) Pressure and temperature dependence of the dielectric properties and phase transitions of the ferroelectric perovskites: \(\text{ PbTiO }_3\) and \(\text{ BaTiO }_3\). Ferroelectrics 2:277Google Scholar
  87. 87.
    Wójcik K (1989) Electrical properties of \(\text{ PbTiO }_3\) single crystals doped with lanthanum. Ferroelectrics 99:5Google Scholar
  88. 88.
    Bhide V, Deshmukh K, Hegde M (1962) Ferroelectric properties of \(\text{ PbTiO }_3\). Physica 28:871Google Scholar
  89. 89.
    Bhide VG, Hegde MS, Deshmukh KG (1968) Ferroelectric properties of lead titanate. J Am Ceram Soc 51:565Google Scholar
  90. 90.
    Shirasaki S-I (1971) Defect lead titanates with diverse curie temperatures. Solid State Commun 9:1217Google Scholar
  91. 91.
    Shirane G, Hoshino S (1951) On the phase transition in lead titanate. J Phys Soc Jpn 6:265Google Scholar
  92. 92.
    Amin A, Cross LE, Newnham RE (1981) Calorimetric and phenomenological studies of the \(\text{ PbZrO }_{3}:\text{ PbTiO }_{3}\) system. Ferroelectrics 37:647Google Scholar
  93. 93.
    Remeika J, Glass A (1970) The growth and ferroelectric properties of high resistivity single crystals of lead titanate. Mater Res Bull 5:37Google Scholar
  94. 94.
    Chen L-Q (2008) Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J Am Ceram Soc 91:1835. Google Scholar
  95. 95.
    Janolin P-E (2009) Strain on ferroelectric thin films. J Mater Sci 44:5025. Google Scholar
  96. 96.
    Sun F, Khassaf H, Alpay SP (2014) Strain engineering of piezoelectric properties of strontium titanate thin films. J Mater Sci 49:5978. Google Scholar
  97. 97.
    Reznitskii LA, Guzei AS (1978) Thermodynamic properties of alkaline earth titanates, zirconates, and hafnates. Russ Chem Rev 47:99Google Scholar
  98. 98.
    Wood EA (1951) Evidence for the noncubic high temperature phase of \(\text{ BaTiO }_3\). J Chem Phys 19:976Google Scholar
  99. 99.
    Yamada T, Kitayama T (1981) Ferroelectric properties of vinylidene fluoride-trifluoroethylene copolymers. J Appl Phys 52:6859Google Scholar
  100. 100.
    Lovinger AJ (1983) Ferroelectric polymers. Science 220:1115Google Scholar
  101. 101.
    Nalwa H (1995) Ferroelectric polymers: chemistry: physics, and applications, plastics engineering. Marcel Dekker Inc., New YorkGoogle Scholar
  102. 102.
    Wang F, Landau D (2001) Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett 86:2050Google Scholar
  103. 103.
    Wang F, Landau D (2001) Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys Rev E 64:056101Google Scholar
  104. 104.
    Landau DP, Tsai S-H, Exler M (2004) A new approach to Monte Carlo simulations in statistical physics: Wang-Landau sampling. Am J Phys 72:1294Google Scholar
  105. 105.
    Bin-Omran S, Kornev IA, Bellaiche L (2016) Wang-Landau Monte Carlo formalism applied to ferroelectrics. Phys Rev B 93:014104Google Scholar
  106. 106.
    Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc B 58:267Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science & Engineering, and Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Institute of PhysicsCzech Academy of SciencesPrague 8Czech Republic
  4. 4.Department of PhysicsUniversity of ConnecticutStorrsUSA

Personalised recommendations