Advertisement

Journal of Materials Science

, Volume 54, Issue 10, pp 7768–7779 | Cite as

Tuning the morphology and chemical composition of MoS2 nanostructures

  • Gal Radovsky
  • Tom Shalev
  • Ariel IsmachEmail author
Electronic materials

Abstract

Chemical vapor deposition has proven to be one of the most promising approaches to achieve large-scale and high-quality ultra-thin layered materials in general, and single- and few-layer transition metal dichalcogenides in particular. Therefore, the study of the conditions affecting the growth and the obtained structure (morphology and chemical composition) is of crucial importance in order to improve its consistency and generalize these methodologies for the growth of other 2D materials. Here, we show that the growth temperature and pressure have significant effect on the final MoS2 morphology, leading to completely different results: homogeneous surface coverage with inorganic fullerenes, loosely surface bound thin elongated hexagonal nanostructures and single-layer domains. This work focuses on the characterization of the less common elongated hexagonal nanostructures, including their growth mechanism, phase, chemical composition, doping and electronic properties. An interesting epitaxial relation between the MoS2 layers and the metal oxide particle, which may have practical implications in the future, is demonstrated and discussed as well. Finally, we demonstrate the in situ doping and alloying to form MoS2-xSex nanostructures. This work provides new insights into the growth mechanism puzzle of MoS2 nanostructures.

Notes

Acknowledgements

G.R., T.S. and A.I. acknowledge the support from the Israel Science Foundation, Grant Number 1784/15, and the Israeli Ministry of Energy, research Grant Number 0605405442.

Compliance with ethical standards

Conflict of interest

This manuscript has not been published and is not under consideration for publication elsewhere. We have no conflicts of interest to disclose.

Supplementary material

10853_2019_3437_MOESM1_ESM.doc (6.7 mb)
Supplementary material 1 (DOC 6905 kb)

References

  1. 1.
    Novoselov KS et al (2012) A roadmap for graphene. Nature 490(7419):192–200CrossRefGoogle Scholar
  2. 2.
    Bonaccorso F et al (2012) Production and processing of graphene and 2d crystals. Mater Today 15(12):564–589CrossRefGoogle Scholar
  3. 3.
    Li X et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314CrossRefGoogle Scholar
  4. 4.
    Butler SZ et al (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4):2898–2926CrossRefGoogle Scholar
  5. 5.
    Bhimanapati GR et al (2015) Recent advances in two-dimensional materials beyond graphene. ACS Nano 9(12):11509–11539CrossRefGoogle Scholar
  6. 6.
    Guo W et al (2018) Controlling fundamental fluctuations for reproducible growth of large single-crystal graphene. ACS Nano 12(2):1778–1784CrossRefGoogle Scholar
  7. 7.
    Hao Y et al (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342(6159):720–723CrossRefGoogle Scholar
  8. 8.
    Ismach A et al (2010) Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett 10(5):1542–1548CrossRefGoogle Scholar
  9. 9.
    Lin L et al (2016) Surface engineering of copper foils for growing centimeter-sized single-crystalline graphene. ACS Nano 10(2):2922–2929CrossRefGoogle Scholar
  10. 10.
    Yan Z et al (2012) Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6(10):9110–9117CrossRefGoogle Scholar
  11. 11.
    Ismach A et al (2012) Toward the controlled synthesis of hexagonal boron nitride films. ACS Nano 6(7):6378–6385CrossRefGoogle Scholar
  12. 12.
    Ismach A et al (2017) Carbon-assisted chemical vapor deposition of hexagonal boron nitride. 2D Mater 4:025117CrossRefGoogle Scholar
  13. 13.
    Mende PC et al (2017) Characterization of hexagonal boron nitride layers on nickel surfaces by low-energy electron microscopy. Surf Sci 659:31–42CrossRefGoogle Scholar
  14. 14.
    Shi YM et al (2010) Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett 10(10):4134–4139CrossRefGoogle Scholar
  15. 15.
    Song L et al (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10(8):3209–3215CrossRefGoogle Scholar
  16. 16.
    Kim KK et al (2012) Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett 12(1):161–166CrossRefGoogle Scholar
  17. 17.
    Tay RY et al (2014) Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper. Nano Lett 14(2):839–846CrossRefGoogle Scholar
  18. 18.
    Lu GY et al (2015) Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy. Nat Commun 6:6160CrossRefGoogle Scholar
  19. 19.
    Jang AR et al (2016) Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett 16(5):3360–3366CrossRefGoogle Scholar
  20. 20.
    Fiori G et al (2014) Electronics based on two-dimensional materials. Nat Nanotechnol 9(10):768–779CrossRefGoogle Scholar
  21. 21.
    Xia FN et al (2014) Two-dimensional material nanophotonics. Nat Photonics 8(12):899–907CrossRefGoogle Scholar
  22. 22.
    Hod O et al (2018) Flatlands in the holy land: the evolution of layered materials research in Israel. Adv Mater 30:1706581CrossRefGoogle Scholar
  23. 23.
    Liu Y et al (2014) Mesoscale imperfections in MoS2 atomic layers grown by a vapor transport technique. Nano Lett 14(8):4682–4686CrossRefGoogle Scholar
  24. 24.
    Lee Y-H et al (2012) Synthesis of large-area MOS2 atomic layers with chemical vapor deposition. Adv Mater 24(17):2320–2325CrossRefGoogle Scholar
  25. 25.
    Kang K et al (2015) High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549):656–660CrossRefGoogle Scholar
  26. 26.
    Gao Y et al (2015) Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat Commun 6:8569CrossRefGoogle Scholar
  27. 27.
    Yu H et al (2017) Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 11(12):12001–12007CrossRefGoogle Scholar
  28. 28.
    Bilgin I et al (2015) Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality. ACS Nano 9(9):8822–8832CrossRefGoogle Scholar
  29. 29.
    Liu X et al (2016) Rotationally commensurate growth of MoS2 on epitaxial graphene. ACS Nano 10(1):1067–1075CrossRefGoogle Scholar
  30. 30.
    Yu Y et al (2013) Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci Rep 3:1866CrossRefGoogle Scholar
  31. 31.
    Eichfeld SM et al (2015) Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano 9(2):2080–2087CrossRefGoogle Scholar
  32. 32.
    Kim H et al (2017) Suppressing nucleation in metal-organic chemical vapor deposition of MoS2 monolayers by Alkali Metal Halides. Nano Lett 17(8):5056–5063CrossRefGoogle Scholar
  33. 33.
    Lin Y-C et al (2018) Realizing large-scale, electronic-grade two-dimensional semiconductors. Acs. NANO 12(2):965–975Google Scholar
  34. 34.
    Wang S et al (2014) Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem Mater 26(22):6371–6379CrossRefGoogle Scholar
  35. 35.
    Diaz HC et al (2016) High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe2/MoS2. Appl Phys Lett 108(19):191606CrossRefGoogle Scholar
  36. 36.
    Ehlen N et al (2019) Narrow photoluminescence and Raman peaks of epitaxial MoS2 on graphene/Ir(111). 2d Mater 6(1):011006CrossRefGoogle Scholar
  37. 37.
    Lin HC et al (2018) Growth of atomically thick transition metal sulfide films on graphene/6H-SIC(0001) by molecular beam epitaxy. Nano Res 11(9):4722–4727CrossRefGoogle Scholar
  38. 38.
    Poh SM et al (2018) Molecular beam epitaxy of highly crystalline MoSe2 on hexagonal boron nitride. ACS Nano 12(8):7562–7570CrossRefGoogle Scholar
  39. 39.
    Xenogiannopoulou E et al (2015) High-quality, large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy. Nanoscale 7(17):7896–7905CrossRefGoogle Scholar
  40. 40.
    Chiappe D et al (2016) Controlled sulfurization process for the synthesis of large area MoS2 films and MoS2/WS2 heterostructures. Adv Mater Interfaces 3(4):1500635CrossRefGoogle Scholar
  41. 41.
    Orofeo CM et al (2014) Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films. Appl Phys Lett 105(8):083112CrossRefGoogle Scholar
  42. 42.
    Feng Q et al (2014) Growth of large-area 2D MoS2(l-x,)Se2x, Semiconductor. Adv Mater 26(17):2648–2653CrossRefGoogle Scholar
  43. 43.
    Cai Z et al (2018) Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chem Rev 118:6091–6133CrossRefGoogle Scholar
  44. 44.
    Zhu DC et al (2017) Capture the growth kinetics of CVD growth of two-dimensional MoS2. Npj 2D Mater Appl 1:1–8CrossRefGoogle Scholar
  45. 45.
    Shang SL et al (2016) Lateral Versus Vertical Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Thermodynamic Insight into MoS2. Nano Lett 16(9):5742–5750CrossRefGoogle Scholar
  46. 46.
    Ye H et al (2017) Toward a mechanistic understanding of vertical growth of van der Waals Stacked 2D materials: a multiscale model and experiments. ACS Nano 11(12):12780–12788CrossRefGoogle Scholar
  47. 47.
    Yun SJ et al (2015) Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. ACS Nano 9(5):5510–5519CrossRefGoogle Scholar
  48. 48.
    Shi JP et al (2015) Substrate facet effect on the growth of mono layer MoS2 on Au foils. ACS Nano 9(4):4017–4025CrossRefGoogle Scholar
  49. 49.
    Rajan AG et al (2016) Generalized mechanistic model for the chemical vapor deposition of 2D transition metal dichalcogenide monolayers. ACS Nano 10(4):4330–4344CrossRefGoogle Scholar
  50. 50.
    Cain JD et al (2016) Growth mechanism of transition metal dichalcogenide monolayers: the role of self-seeding fullerene nuclei. ACS Nano 10(5):5440–5445CrossRefGoogle Scholar
  51. 51.
    Feldman Y et al (1996) Bulk synthesis of inorganic fullerene-like MS(2) (M = Mo, W) from the respective trioxides and the reaction mechanism. J Am Chem Soc 118(23):5362–5367CrossRefGoogle Scholar
  52. 52.
    Wu K et al (2018) Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement. Nano Res 11(8):4123–4132CrossRefGoogle Scholar
  53. 53.
    Zak A et al (2009) Insight Into the growth mechanism of WS2 nanotubes in the scaled-up fluidized-bed reactor. NANO 4(2):91–98CrossRefGoogle Scholar
  54. 54.
    Duan X et al (2014) Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nanotechnol 9(12):1024–1030CrossRefGoogle Scholar
  55. 55.
    Dhakal KP et al (2017) Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chem Mater 29(12):5124–5133CrossRefGoogle Scholar
  56. 56.
    Conley HJ et al (2013) Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 13(8):3626–3630CrossRefGoogle Scholar
  57. 57.
    Tenne R (2006) Inorganic nanotubes and fullerene-like nanoparticles. Nat Nanotechnol 1(2):103–111CrossRefGoogle Scholar
  58. 58.
    Tenne R, Seifert G (2009) Recent progress in the study of inorganic nanotubes and fullerene-like structures. Ann Rev Mater Res 39:387–413CrossRefGoogle Scholar
  59. 59.
    DeGregorio ZP, Yoo Y, Johns JE (2017) Aligned MoO2/MoS2 and MoO2/MoTe2 freestanding core/shell nanoplates driven by surface interactions. J Phys Chem Lett 8(7):1631–1636CrossRefGoogle Scholar
  60. 60.
    Wu D et al (2018) Epitaxial growth of highly oriented metallic MoO2@MoS2 nanorods on C-sapphire. J Phys Chem C 122(3):1860–1866CrossRefGoogle Scholar
  61. 61.
    Park T et al (2017) Synthesis of vertical MoO2/MoS2 core-shell structures on an amorphous substrate via chemical vapor deposition. J Phys Chem C 121(49):27693–27699CrossRefGoogle Scholar
  62. 62.
    Dieterle M, Mestl G (2002) Raman spectroscopy of molybdenum oxides—Part II. Resonance Raman spectroscopic characterization of the molybdenum oxides Mo4O11 and MoO2. Phys Chem Chem Phys 4(5):822–826CrossRefGoogle Scholar
  63. 63.
    Mak KF et al (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105(13):136805CrossRefGoogle Scholar
  64. 64.
    Tongay S, et al (2013) Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci Rep 3:2657CrossRefGoogle Scholar
  65. 65.
    Nan H et al (2014) Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8(6):5738–5745CrossRefGoogle Scholar
  66. 66.
    Desai SB et al (2014) Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett 14(8):4592–4597CrossRefGoogle Scholar
  67. 67.
    Gulbransen EA, Andrew KF, Brassart FA (1963) Vapor pressure of molybdenum trioxide. J Electrochem Soc 110(3):242–243CrossRefGoogle Scholar
  68. 68.
    Zhu D et al (2017) Capture the growth kinetics of CVD growth of two-dimensional MoS2. npj 2D Mater Appl 1(1):8CrossRefGoogle Scholar
  69. 69.
    Dumcenco D et al (2015) Large-area epitaxial mono layer MoS2. ACS Nano 9(4):4611–4620CrossRefGoogle Scholar
  70. 70.
    Ruzmetov D et al (2016) Vertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride. ACS Nano 10(3):3580–3588CrossRefGoogle Scholar
  71. 71.
    Bana H et al (2018) Epitaxial growth of single-orientation high-quality MoS2 monolayers. 2D Mater 5(3):035012CrossRefGoogle Scholar
  72. 72.
    Yan A et al (2015) Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett 15(10):6324–6331CrossRefGoogle Scholar
  73. 73.
    Dahl-Petersen C et al (2018) Topotactic growth of edge-terminated MoS2 from MoO2 nanocrystals. ACS Nano 12:5351–5358CrossRefGoogle Scholar
  74. 74.
    Rogers DB et al (1969) Crystal chemistry of metal dioxides with rutile-related structures. Inorg Chem 8(4):841–849CrossRefGoogle Scholar
  75. 75.
    Le CT et al (2017) Impact of Selenium Doping on Resonant Second-Harmonic Generation in Monolayer MoS2. Acs Photonics 4(1):38–44CrossRefGoogle Scholar
  76. 76.
    Feng QL et al (2015) Growth of MoS2(1-x)Se2x (x = 0.41-1.00) Monolayer alloys with controlled morphology by physical vapor deposition. Acs Nano 9(7):7450–7455CrossRefGoogle Scholar
  77. 77.
    Song JG et al (2015) Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nat Commun 6:7817CrossRefGoogle Scholar
  78. 78.
    Duan XD et al (2016) Synthesis of WS2xSe2-2x Alloy Nanosheets with Composition-Tunable Electronic Properties. Nano Lett 16(1):264–269CrossRefGoogle Scholar
  79. 79.
    Wang ZQ et al (2018) Synthesizing 1T-1H Two-Phase Mo1-xWxS2 Monolayers by Chemical Vapor Deposition. ACS Nano 12(2):1571–1579CrossRefGoogle Scholar
  80. 80.
    Wi S et al (2014) Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. ACS Nano 8(5):5270–5281CrossRefGoogle Scholar
  81. 81.
    Sun QC et al (2013) Observation of a Burstein-Moss shift in rhenium-doped MoS2 nanoparticles. ACS Nano 7(4):3506–3511CrossRefGoogle Scholar
  82. 82.
    Fang H et al (2013) Degenerate n-Doping of Few-Layer Transition Metal Dichalcogenides by Potassium. Nano Lett 13(5):1991–1995CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations