Journal of Materials Science

, Volume 54, Issue 10, pp 7719–7727 | Cite as

Ca segregation at Au–YSZ interfaces

  • Ting Mao
  • Hadar Nahor
  • Wayne D. KaplanEmail author


Au thin films deposited on (111) YSZ single-crystal substrates were dewetted and equilibrated in a low oxygen partial pressure (10−20 atm) at 950 °C. Electron backscattered diffraction of 150 equilibrated Au particles shows that there is no preferred low-index orientation relationship (in-plane orientation relationship) but rather a strong preferred orientation of {111} Au || {111} YSZ. This result is associated with identical interface energies (1.75 ± 0.02 J/m2) measured using Winterbottom analysis from three equilibrated Au particles with different orientation relationships with the YSZ substrate. Energy dispersive spectroscopy in a scanning transmission electron microscope of the interfaces showed a Ca excess of Γ = 1.65 ± 0.20 atoms/nm2 (detection limit of 0.12 atoms/nm2). It is believed that Ca segregation reduces the interface energy of the system, resulting in a more isotropic orientation distribution instead of a low-index orientation relationship normally seen between fcc metals and YSZ.



This research was partially supported by the Israel Science Foundation (grant 381/14). The authors acknowledge Y. Kauffmann, A. Berner, A. Kosinova, and L. Rudnik for assistance with the characterization process.


  1. 1.
    Rühle M, Evans AG (1989) Structure and chemistry of metal/ceramic interfaces. Mater Sci Eng A 107:187–197CrossRefGoogle Scholar
  2. 2.
    James M (1997) Howe, interfaces in materials: atomic structure, thermodynamics and kinetics of solid–vapor, solid–liquid and solid–solid interfaces. Wiley, New YorkGoogle Scholar
  3. 3.
    Nahor H, Kaplan WD (2016) Structure of the equilibrated Ni(111)-YSZ(111) solid–solid interface. J Am Ceram Soc 99(3):1064–1070CrossRefGoogle Scholar
  4. 4.
    Meltzman H, Mordehai D, Kaplan WD (2012) Solid–solid interface reconstruction at equilibrated Ni-Al2O3 interfaces. Acta Mater 60(11):4359–4369CrossRefGoogle Scholar
  5. 5.
    Finnis MW (1996) The theory of metal-ceramic interfaces. J Phys Condens Matter 8:5811–5836CrossRefGoogle Scholar
  6. 6.
    Atiya G, Mikhelashvili V, Eisenstein G, Kaplan WD (2014) Solid-state dewetting of Pt on (100) SrTiO3. J Mater Sci 49(11):3863–3874. CrossRefGoogle Scholar
  7. 7.
    Chen X, Garrent T, Liu SW, Lin Y, Zhang QY, Dong C, Chen CL (2003) Scanning tunnelling microscopy studies of growth morphology in highly epitaxial c-axis oriented Pt thin film on (001) SrTiO3. Surf Sci 542(3):655–661CrossRefGoogle Scholar
  8. 8.
    Sasaki T, Matsunaga K, Ohta H, Hosono H, Yamamoto T, Ikuhara Y (2003) Atomic and electronic structures of Cu/α-Al2O3 interfaces prepared by pulsed-laser deposition. Sci Technol Adv Mater 4(6):575–584CrossRefGoogle Scholar
  9. 9.
    Dickey EC, Fan X, Pennycook SJ (1999) Direct atomic-scale imaging of ceramic interfaces. Acta Mater 47(15-16):4061–4068CrossRefGoogle Scholar
  10. 10.
    Beck G, Fischer H, Mutoro E, Srot V, Petrikowski K, Tchernychova E, Wuttig M, Ruhle M, Luerben B, Janek J (2007) Epitaxial Pt(111) thin film electrodes on YSZ(111) and YSZ(100)—preparation and characterisation. Solid State Ionics 178(5-6):327–337CrossRefGoogle Scholar
  11. 11.
    Fecht HJ, Gleiter H (1985) A lock-in model for the atomic structure of interphase boundaries between metals and ionic crystals. Acta Metall 33(4):557–562CrossRefGoogle Scholar
  12. 12.
    Hansen KH, Worren T, Stempel S, Laegsgaard E, Baumer M, Freund H-J, Besenbacher F, Stensgaard I (1999) Palladium nanocrystals on Al2O3. Structure and adhesion energy. Phys Rev Lett 83(20):4120–4123CrossRefGoogle Scholar
  13. 13.
    Sadan H, Kaplan WD (2006) Au-sapphire (0001) solid–solid interfacial energy. J Mater Sci 41(16):5099–5107. CrossRefGoogle Scholar
  14. 14.
    Hou PY (2008) Segregation phenomena at thermally grown Al2O3/alloy interfaces. Annu Rev Mater Res 38:275–298CrossRefGoogle Scholar
  15. 15.
    Wang XG, Smith JR, Evans A (2002) Fundamental influence of C on adhesion of the Al2O3/Al interface. Phys Rev Lett 89(28):286102CrossRefGoogle Scholar
  16. 16.
    Gibbs JW (1961) The collected works of J. W. Gibbs. Dover, New YorkGoogle Scholar
  17. 17.
    Mori M, Itagaki Y, Sadaoka Y, Nakagawa S-I, Kida M, Kojima T (2014) Detection of offensive odorant in air with a planar-type potentiometric gas sensor based on YSZ with Au and Pt electrodes. Sens Actuat B Chem 191:351–355CrossRefGoogle Scholar
  18. 18.
    Sirinakis G, Siddique R, Manning I, Rogers PH, Carpenter MA (2006) Development and characterization of Au–YSZ surface plasmon resonance based sensing materials: high temperature detection of CO. J Phys Chem B 110(27):13508–13511CrossRefGoogle Scholar
  19. 19.
    Zhang X, Wang H, Xu BQ (2005) Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation. J Phys Chem B 109(19):9678–9683CrossRefGoogle Scholar
  20. 20.
    Schonauer-Kamin D, Fleischer M, Moos R (2013) Half-Cell potential analysis of an ammonia sensor with the electrochemical cell Au | YSZ | Au, V2O5–WO3–TiO2. Sensors 13(4):4760–4780CrossRefGoogle Scholar
  21. 21.
    Zucker RV, Chatain D, Dahmen U, Hagege S, Carter WC (2012) New software tools for the calculation and display of isolated and attached interfacial-energy minimizing particle shapes. J Mater Sci 47(24):8290–8302. CrossRefGoogle Scholar
  22. 22.
    Baram M, Kaplan WD (2008) Quantitative HRTEM analysis of FIB prepared specimens. J Microsc 232(3):395–405CrossRefGoogle Scholar
  23. 23.
    Reyntjens S, Puers R (2001) A review of focused ion beam applications in microsystems technology. J Micromech Microeng 11(4):287–300CrossRefGoogle Scholar
  24. 24.
    Sivel VGM, Brand JVD, Wang WR, Mohdadi H, Tichelaar FD, Alkemade PFA, Zandbergen HW (2004) Application of the dual-beam FIB/SEM to metals research. J Microsc 214(3):237–245CrossRefGoogle Scholar
  25. 25.
    Winterbottom WL (1967) Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metall 15(2):303–310CrossRefGoogle Scholar
  26. 26.
    Pilliar RM, Nutting J (1967) Solid–solid interfacial energy determinations in metal-ceramic systems. Phil Mag 16(139):181–188CrossRefGoogle Scholar
  27. 27.
    Kumikov VK, Khokonov KB (1983) On the measurement of surface free-energy and surface-tension of solid metals. J Appl Phys 54(3):1346–1350CrossRefGoogle Scholar
  28. 28.
    Lallet F, Olivi-Tran N, Lewis LJ (2009) Interface energies of (100)YSZ and (111)YSZ epitaxial islands on (0001)α-Al2O3 substrates from first principles. Phys Rev B 79(3):1–12CrossRefGoogle Scholar
  29. 29.
    Keast VJ, Williams DB (2000) Quantification of boundary segregation in the analytical electron microscope. J Microsc 199(1):45–55CrossRefGoogle Scholar
  30. 30.
    Akiva R, Berner A, Kaplan WD (2013) The solubility limit of CaO in α-alumina at 1600°C. J Am Ceram Soc 96(10):3258–3264Google Scholar
  31. 31.
    Wang Z, Wynblatt P (1998) The equilibrium form of pure gold crystals. Surf Sci 398(1-2):259–266CrossRefGoogle Scholar
  32. 32.
    Heyraud JC, Metois JJ (1980) Equilibrium shape of gold crystallites on a graphite cleavage surface—surface energies and interfacial energy. Acta Metall 28(12):1789–1797CrossRefGoogle Scholar
  33. 33.
    Sivaramakrishnan S, Wen JG, Scarpelli ME, Pierce BJ, Zuo JM (2010) Equilibrium shapes and triple line energy of epitaxial gold nanocrystals supported on TiO2(110). Phys Rev B 82(19):195421CrossRefGoogle Scholar
  34. 34.
    Wang Z, Wynblatt P (1998) Wetting and energetics of solid Au and Au–Ge/SiC interfaces. Acta Mater 46(14):4853–4859CrossRefGoogle Scholar
  35. 35.
    Cheng WC, Wynblatt P (1997) Equilibrium form of Pb–Bi–Ni alloy crystals. J Cryst Growth 173(3–4):513–527CrossRefGoogle Scholar
  36. 36.
    Chatain D, Wynblatt P, Rohrer GS (2005) Equilibrium crystal shape of Bi-saturated Cu crystals at 1223 K. Acta Mater 53(15):4057–4064CrossRefGoogle Scholar
  37. 37.
    Sundquist BE (1964) A direct determination of the anisotropy of the surface free energy of solid gold, silver, copper, nickel, and alpha and gamma iron. Acta Metall 12(1):67–86CrossRefGoogle Scholar
  38. 38.
    Nahor H, Meltzman H, Kaplan WD (2014) Ni–YSZ(111) solid-solid interfacial energy. J Mater Sci 49(11):3943–3950. CrossRefGoogle Scholar
  39. 39.
    Li J, Wang Z, Chen C, Huang S (2014) Atomic-scale observation of migration and coalescence of Au nanoclusters on YSZ surface by aberration-corrected STEM. Sci Rep 4:5521CrossRefGoogle Scholar
  40. 40.
    Nahor H, Kauffmann Y, Kaplan WD (2019) The Cr-doped Ni–YSZ(111) interface: segregation, oxidation and the Ni equilibrium crystal shape. Acta Mater 166:28–36CrossRefGoogle Scholar
  41. 41.
    Baram M, Chatain D, Kaplan WD (2011) Nanometer-thick equilibrium films: the interface between thermodynamics and atomistics. Science 332(6026):206–209CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations