Advertisement

Journal of Materials Science

, Volume 54, Issue 10, pp 7719–7727 | Cite as

Ca segregation at Au–YSZ interfaces

  • Ting Mao
  • Hadar Nahor
  • Wayne D. KaplanEmail author
Composites
  • 62 Downloads

Abstract

Au thin films deposited on (111) YSZ single-crystal substrates were dewetted and equilibrated in a low oxygen partial pressure (10−20 atm) at 950 °C. Electron backscattered diffraction of 150 equilibrated Au particles shows that there is no preferred low-index orientation relationship (in-plane orientation relationship) but rather a strong preferred orientation of {111} Au || {111} YSZ. This result is associated with identical interface energies (1.75 ± 0.02 J/m2) measured using Winterbottom analysis from three equilibrated Au particles with different orientation relationships with the YSZ substrate. Energy dispersive spectroscopy in a scanning transmission electron microscope of the interfaces showed a Ca excess of Γ = 1.65 ± 0.20 atoms/nm2 (detection limit of 0.12 atoms/nm2). It is believed that Ca segregation reduces the interface energy of the system, resulting in a more isotropic orientation distribution instead of a low-index orientation relationship normally seen between fcc metals and YSZ.

Notes

Acknowledgements

This research was partially supported by the Israel Science Foundation (grant 381/14). The authors acknowledge Y. Kauffmann, A. Berner, A. Kosinova, and L. Rudnik for assistance with the characterization process.

References

  1. 1.
    Rühle M, Evans AG (1989) Structure and chemistry of metal/ceramic interfaces. Mater Sci Eng A 107:187–197CrossRefGoogle Scholar
  2. 2.
    James M (1997) Howe, interfaces in materials: atomic structure, thermodynamics and kinetics of solid–vapor, solid–liquid and solid–solid interfaces. Wiley, New YorkGoogle Scholar
  3. 3.
    Nahor H, Kaplan WD (2016) Structure of the equilibrated Ni(111)-YSZ(111) solid–solid interface. J Am Ceram Soc 99(3):1064–1070CrossRefGoogle Scholar
  4. 4.
    Meltzman H, Mordehai D, Kaplan WD (2012) Solid–solid interface reconstruction at equilibrated Ni-Al2O3 interfaces. Acta Mater 60(11):4359–4369CrossRefGoogle Scholar
  5. 5.
    Finnis MW (1996) The theory of metal-ceramic interfaces. J Phys Condens Matter 8:5811–5836CrossRefGoogle Scholar
  6. 6.
    Atiya G, Mikhelashvili V, Eisenstein G, Kaplan WD (2014) Solid-state dewetting of Pt on (100) SrTiO3. J Mater Sci 49(11):3863–3874.  https://doi.org/10.1007/s10853-013-7966-5 CrossRefGoogle Scholar
  7. 7.
    Chen X, Garrent T, Liu SW, Lin Y, Zhang QY, Dong C, Chen CL (2003) Scanning tunnelling microscopy studies of growth morphology in highly epitaxial c-axis oriented Pt thin film on (001) SrTiO3. Surf Sci 542(3):655–661CrossRefGoogle Scholar
  8. 8.
    Sasaki T, Matsunaga K, Ohta H, Hosono H, Yamamoto T, Ikuhara Y (2003) Atomic and electronic structures of Cu/α-Al2O3 interfaces prepared by pulsed-laser deposition. Sci Technol Adv Mater 4(6):575–584CrossRefGoogle Scholar
  9. 9.
    Dickey EC, Fan X, Pennycook SJ (1999) Direct atomic-scale imaging of ceramic interfaces. Acta Mater 47(15-16):4061–4068CrossRefGoogle Scholar
  10. 10.
    Beck G, Fischer H, Mutoro E, Srot V, Petrikowski K, Tchernychova E, Wuttig M, Ruhle M, Luerben B, Janek J (2007) Epitaxial Pt(111) thin film electrodes on YSZ(111) and YSZ(100)—preparation and characterisation. Solid State Ionics 178(5-6):327–337CrossRefGoogle Scholar
  11. 11.
    Fecht HJ, Gleiter H (1985) A lock-in model for the atomic structure of interphase boundaries between metals and ionic crystals. Acta Metall 33(4):557–562CrossRefGoogle Scholar
  12. 12.
    Hansen KH, Worren T, Stempel S, Laegsgaard E, Baumer M, Freund H-J, Besenbacher F, Stensgaard I (1999) Palladium nanocrystals on Al2O3. Structure and adhesion energy. Phys Rev Lett 83(20):4120–4123CrossRefGoogle Scholar
  13. 13.
    Sadan H, Kaplan WD (2006) Au-sapphire (0001) solid–solid interfacial energy. J Mater Sci 41(16):5099–5107.  https://doi.org/10.1007/s10853-006-0437-5 CrossRefGoogle Scholar
  14. 14.
    Hou PY (2008) Segregation phenomena at thermally grown Al2O3/alloy interfaces. Annu Rev Mater Res 38:275–298CrossRefGoogle Scholar
  15. 15.
    Wang XG, Smith JR, Evans A (2002) Fundamental influence of C on adhesion of the Al2O3/Al interface. Phys Rev Lett 89(28):286102CrossRefGoogle Scholar
  16. 16.
    Gibbs JW (1961) The collected works of J. W. Gibbs. Dover, New YorkGoogle Scholar
  17. 17.
    Mori M, Itagaki Y, Sadaoka Y, Nakagawa S-I, Kida M, Kojima T (2014) Detection of offensive odorant in air with a planar-type potentiometric gas sensor based on YSZ with Au and Pt electrodes. Sens Actuat B Chem 191:351–355CrossRefGoogle Scholar
  18. 18.
    Sirinakis G, Siddique R, Manning I, Rogers PH, Carpenter MA (2006) Development and characterization of Au–YSZ surface plasmon resonance based sensing materials: high temperature detection of CO. J Phys Chem B 110(27):13508–13511CrossRefGoogle Scholar
  19. 19.
    Zhang X, Wang H, Xu BQ (2005) Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation. J Phys Chem B 109(19):9678–9683CrossRefGoogle Scholar
  20. 20.
    Schonauer-Kamin D, Fleischer M, Moos R (2013) Half-Cell potential analysis of an ammonia sensor with the electrochemical cell Au | YSZ | Au, V2O5–WO3–TiO2. Sensors 13(4):4760–4780CrossRefGoogle Scholar
  21. 21.
    Zucker RV, Chatain D, Dahmen U, Hagege S, Carter WC (2012) New software tools for the calculation and display of isolated and attached interfacial-energy minimizing particle shapes. J Mater Sci 47(24):8290–8302.  https://doi.org/10.1007/s10853-012-6739-x CrossRefGoogle Scholar
  22. 22.
    Baram M, Kaplan WD (2008) Quantitative HRTEM analysis of FIB prepared specimens. J Microsc 232(3):395–405CrossRefGoogle Scholar
  23. 23.
    Reyntjens S, Puers R (2001) A review of focused ion beam applications in microsystems technology. J Micromech Microeng 11(4):287–300CrossRefGoogle Scholar
  24. 24.
    Sivel VGM, Brand JVD, Wang WR, Mohdadi H, Tichelaar FD, Alkemade PFA, Zandbergen HW (2004) Application of the dual-beam FIB/SEM to metals research. J Microsc 214(3):237–245CrossRefGoogle Scholar
  25. 25.
    Winterbottom WL (1967) Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metall 15(2):303–310CrossRefGoogle Scholar
  26. 26.
    Pilliar RM, Nutting J (1967) Solid–solid interfacial energy determinations in metal-ceramic systems. Phil Mag 16(139):181–188CrossRefGoogle Scholar
  27. 27.
    Kumikov VK, Khokonov KB (1983) On the measurement of surface free-energy and surface-tension of solid metals. J Appl Phys 54(3):1346–1350CrossRefGoogle Scholar
  28. 28.
    Lallet F, Olivi-Tran N, Lewis LJ (2009) Interface energies of (100)YSZ and (111)YSZ epitaxial islands on (0001)α-Al2O3 substrates from first principles. Phys Rev B 79(3):1–12CrossRefGoogle Scholar
  29. 29.
    Keast VJ, Williams DB (2000) Quantification of boundary segregation in the analytical electron microscope. J Microsc 199(1):45–55CrossRefGoogle Scholar
  30. 30.
    Akiva R, Berner A, Kaplan WD (2013) The solubility limit of CaO in α-alumina at 1600°C. J Am Ceram Soc 96(10):3258–3264Google Scholar
  31. 31.
    Wang Z, Wynblatt P (1998) The equilibrium form of pure gold crystals. Surf Sci 398(1-2):259–266CrossRefGoogle Scholar
  32. 32.
    Heyraud JC, Metois JJ (1980) Equilibrium shape of gold crystallites on a graphite cleavage surface—surface energies and interfacial energy. Acta Metall 28(12):1789–1797CrossRefGoogle Scholar
  33. 33.
    Sivaramakrishnan S, Wen JG, Scarpelli ME, Pierce BJ, Zuo JM (2010) Equilibrium shapes and triple line energy of epitaxial gold nanocrystals supported on TiO2(110). Phys Rev B 82(19):195421CrossRefGoogle Scholar
  34. 34.
    Wang Z, Wynblatt P (1998) Wetting and energetics of solid Au and Au–Ge/SiC interfaces. Acta Mater 46(14):4853–4859CrossRefGoogle Scholar
  35. 35.
    Cheng WC, Wynblatt P (1997) Equilibrium form of Pb–Bi–Ni alloy crystals. J Cryst Growth 173(3–4):513–527CrossRefGoogle Scholar
  36. 36.
    Chatain D, Wynblatt P, Rohrer GS (2005) Equilibrium crystal shape of Bi-saturated Cu crystals at 1223 K. Acta Mater 53(15):4057–4064CrossRefGoogle Scholar
  37. 37.
    Sundquist BE (1964) A direct determination of the anisotropy of the surface free energy of solid gold, silver, copper, nickel, and alpha and gamma iron. Acta Metall 12(1):67–86CrossRefGoogle Scholar
  38. 38.
    Nahor H, Meltzman H, Kaplan WD (2014) Ni–YSZ(111) solid-solid interfacial energy. J Mater Sci 49(11):3943–3950.  https://doi.org/10.1007/s10853-013-7960-y CrossRefGoogle Scholar
  39. 39.
    Li J, Wang Z, Chen C, Huang S (2014) Atomic-scale observation of migration and coalescence of Au nanoclusters on YSZ surface by aberration-corrected STEM. Sci Rep 4:5521CrossRefGoogle Scholar
  40. 40.
    Nahor H, Kauffmann Y, Kaplan WD (2019) The Cr-doped Ni–YSZ(111) interface: segregation, oxidation and the Ni equilibrium crystal shape. Acta Mater 166:28–36CrossRefGoogle Scholar
  41. 41.
    Baram M, Chatain D, Kaplan WD (2011) Nanometer-thick equilibrium films: the interface between thermodynamics and atomistics. Science 332(6026):206–209CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations