Growth of black TiO2 nanowire/carbon fiber composites with dendritic structure for efficient visible-light-driven photocatalytic degradation of methylene blue

  • Dongmei Zhang
  • Tianze Cong
  • Lichen Xia
  • Lujun PanEmail author
Chemical routes to materials


The utilization of solar energy and recombination of electron–hole pairs are two major barriers that significantly limit the use of TiO2 in photocatalysis. In this article, dendritic TiO2/CF composites, which significantly improve the adsorption ability and maximize light-harvesting efficiency, were synthesized by hydrothermal method. With further reduction by hydrogen, black TiO2/CF composites were obtained, which have extended photoresponse range due to the produced surface defects and oxygen vacancies. In the photocatalytic degradation of methylene blue, the black TiO2/CF composites show greatly enhanced photocatalytic ability compared with the white ones. The improved photocatalytic efficiency could be owned to three aspects: the improved adsorption ability, the enhanced light absorption, and the introduced oxygen vacancies and defects in the surface layer of black TiO2. This study indicates the great potential of these black TiO2/CF composites in photocatalysis and related areas, and provides a new strategy to synthesize photocatalysts with enhanced photocatalytic efficiency.



This work was supported by the National Natural Science Foundation of China (Nos. 51661145025, 11274055, 61520106013).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no financial and personal relationships with other people or organizations that can influence our work.

Supplementary material

10853_2019_3424_MOESM1_ESM.docx (802 kb)
Supplementary material 1 (DOCX 802 kb)


  1. 1.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  2. 2.
    Sajan CP, Wageh S, Al-Ghamdi AA, Yu J, Cao S (2016) TiO2 nanosheets with exposed 001 facets for photocatalytic applications. Nano Res 9:3–27CrossRefGoogle Scholar
  3. 3.
    Park H, Kim H, Moon G, Choi W (2015) Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ Sci 9:411–433CrossRefGoogle Scholar
  4. 4.
    Wu B, Liu D, Mubeen S, Chuong TT, Moskovits M, Stucky GD (2016) Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J Am Chem Soc 138:1114–1117CrossRefGoogle Scholar
  5. 5.
    Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21CrossRefGoogle Scholar
  6. 6.
    Pitre SP, Yoon TP, Scaiano JC (2017) Titanium dioxide visible light photocatalysis: surface association enables photocatalysis with visible light irradiation. Chem Commun 53:4335CrossRefGoogle Scholar
  7. 7.
    Koltsakidou Α, Antonopoulou M, Evgenidou E, Konstantinou I, Lambropoulou DA (2017) Cytarabine degradation by simulated solar assisted photocatalysis using TiO2. Chem Eng J 316:823–831CrossRefGoogle Scholar
  8. 8.
    Zhao L, Chen XF, Wang XC, Zhang YJ, Wei W, Sun YH, Antonietti M, Titirici MM (2010) One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv Mater 22:3317–3321CrossRefGoogle Scholar
  9. 9.
    Zhao C, Luo H, Chen F, Zhang P, Yi L, You K (2014) A novel composite of TiO2 nanotubes with remarkably high efficiency for hydrogen production in solar-driven water splitting. Energy Environ Sci 7:1700–1707CrossRefGoogle Scholar
  10. 10.
    Jr DPC, Roussel KA, Saeh J, Skinner DE, Cavaleri JJ, Bowman RM (1995) Femtosecond study of the intensity dependence of electron–hole dynamics in TiO2 nanoclusters. Chem Phys Lett 232:207–214CrossRefGoogle Scholar
  11. 11.
    Jiang G, Li X, Wei Z, Jiang T, Du X, Chen W (2014) Growth of N-doped BiOBr nanosheets on carbon fibers for photocatalytic degradation of organic pollutants under visible light irradiation. Powder Technol 260:84–89CrossRefGoogle Scholar
  12. 12.
    Wang C, Jiang F, Yue R, Wang H, Du Y (2014) Enhanced photo-electrocatalytic performance of Pt/RGO/TiO2 on carbon fiber towards methanol oxidation in alkaline media. J Solid State Elect 18:515–522CrossRefGoogle Scholar
  13. 13.
    Yu D, Bai J, Liang H, Wang J, Li C (2015) Fabrication of a novel visible-light-driven photocatalyst Ag–AgI–TiO2 nanoparticles supported on carbon nanofibers. Appl Surf Sci 349:241–250CrossRefGoogle Scholar
  14. 14.
    Wu WQ, Feng HL, Rao HS, Xu YF, Kuang DB, Su CY (2014) Maximizing omnidirectional light harvesting in metal oxide hyperbranched array, architectures. Nat Commun 5:3968CrossRefGoogle Scholar
  15. 15.
    Jing D, Li S, Zhao Z, Huang Y, Jia Y, Zheng H (2015) Biomimetic CNT@TiO2 composite with enhanced photocatalytic properties. Chem Eng J 281:60–68CrossRefGoogle Scholar
  16. 16.
    Chu L, Li L, Su J, Tu F, Liu N, Gao Y (2014) A general method for preparing anatase TiO2 treelike-nanoarrays on various metal wires for fiber dye-sensitized solar cells. Sci Rep-UK 4:4420CrossRefGoogle Scholar
  17. 17.
    Guo W, Xu C, Wang X, Wang S, Pan C, Lin C, Wang ZL (2012) Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. J Am Chem Soc 134:4437CrossRefGoogle Scholar
  18. 18.
    Li B, Wu JM, Guo TT, Tang MZ, Wen W (2014) A facile solution route to deposit TiO2 nanowire arrays on arbitrary substrates. Nanoscale 6:3046–3050CrossRefGoogle Scholar
  19. 19.
    Jordan V, Javornik U, Plavec J, Podgornik A, Rečnik A (2016) Self-assembly of multilevel branched rutile-type TiO2 structures via oriented lateral and twin attachment. Sci Rep-UK 6:1–12CrossRefGoogle Scholar
  20. 20.
    Ma L, Li N, Wu G, Song G, Li X, Han P, Wang G, Huang Y (2017) Interfacial enhancement of carbon fiber composites by growing TiO2 nanowires onto amine-based functionalized carbon fiber surface in supercritical water. Appl Surf Sci 433:560–567CrossRefGoogle Scholar
  21. 21.
    Inturi SNR, Boningari T, Suidan M, Smirniotis PG (2014) Flame aerosol synthesized Cr incorporated TiO2 for visible light photodegradation of gas phase acetonitrile. J Phys Chem C 118:231–242CrossRefGoogle Scholar
  22. 22.
    Liu G, Han C, Pelaez M, Zhu D, Liao S, Likodimos V, Kontos AG, Falaras P, Dionysiou DD (2013) Enhanced visible light photocatalytic activity of C N-codoped TiO2 films for the degradation of microcystin-LR. J Mol Catal A Chem 372:58–65CrossRefGoogle Scholar
  23. 23.
    Lu H, Zhao B, Pan R, Yao J, Qiu J, Luo L, Liu Y (2014) Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity. Rsc Adv 4:1128–1132CrossRefGoogle Scholar
  24. 24.
    Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750CrossRefGoogle Scholar
  25. 25.
    Shi JW, Cui HJ, Chen JW, Fu ML, Xu B, Luo HY, Ye ZL (2012) TiO2/activated carbon fibers photocatalyst: effects of coating procedures on the microstructure, adhesion property, and photocatalytic ability. J Colloid Interface Sci 388:201–208CrossRefGoogle Scholar
  26. 26.
    Brasquet C, Rousseau B, Estrade-Szwarckopf H, Cloirec PL (2000) Observation of activated carbon fibres with SEM and AFM correlation with adsorption data in aqueous solution. Carbon 38:407–422CrossRefGoogle Scholar
  27. 27.
    Kumar A, Madaria AR, Zhou C (2010) Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. J Phys Chem C 114:7787–7792CrossRefGoogle Scholar
  28. 28.
    Trung T, Cho WJ, Ha CS (2003) Preparation of TiO2 nanoparticles in glycerol-containing solutions. Mater Lett 57:2746–2750CrossRefGoogle Scholar
  29. 29.
    Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D, Xu F, Huang F, Lin J, Xie X, Jiang M (2013) Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ Sci 6:3007–3014CrossRefGoogle Scholar
  30. 30.
    Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectra of anatase TiO2. J Raman Spectrosc 7:321–324CrossRefGoogle Scholar
  31. 31.
    Zanatta ARA (2017) Fast-reliable methodology to estimate the concentration of rutile or anatase phases of TiO2. AIP Adv 7:075201CrossRefGoogle Scholar
  32. 32.
    Bassi AL, Cattaneo D, Russo V, Bottani CE (2005) Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: the influence of size and stoichiometry. J Appl Phys 98:074305CrossRefGoogle Scholar
  33. 33.
    Parker JC, Siegel RW (1990) Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes. J Mater Res 5:1246–1252CrossRefGoogle Scholar
  34. 34.
    Guettaï N, Ait Amar H (2005) Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: kinetics study. Desalination 185:439–448CrossRefGoogle Scholar
  35. 35.
    Zhai Y, Zhai S, Chen G, Zhang K, Yue Q, Wang L, Liu J, Jia J (2011) Effects of morphology of nanostructured ZnO on direct electrochemistry and biosensing properties of glucose oxidase. J Electroanal Chem 656:198–205CrossRefGoogle Scholar
  36. 36.
    Liu Y, Jin W, Zhao Y, Zhang G, Zhang W (2017) Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Appl Catal B Environ 206:642–652CrossRefGoogle Scholar
  37. 37.
    Kumaran NN, Muraleedharan K (2017) Photocatalytic activity of ZnO and Sr2+ doped ZnO nanoparticles. J Water Process Eng 17:264–270CrossRefGoogle Scholar
  38. 38.
    Maruthamani D, Vadivel S, Kumaravel M, Saravanakumar B, Paul B, Dhar SS, Yangjeh AH, Manikandan A, Ramadoss G (2017) Fine cutting edge shaped Bi2O3 rods/reduced graphene oxide (RGO) composite for supercapacitor and visible-light photocatalytic applications. J Colloid Interface Sci 498:449–459CrossRefGoogle Scholar
  39. 39.
    Li X, Wu Y, Shen Y, Sun Y, Yang Y, Xie A (2017) A novel bifunctional Ni-doped TiO2, inverse opal with enhanced SERS performance and excellent photocatalytic activity. Appl Surf Sci 427:739–744CrossRefGoogle Scholar
  40. 40.
    Niu X, Yan W, Zhao H, Yang J (2018) Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity. Appl Surf Sci 440:804–813CrossRefGoogle Scholar
  41. 41.
    Pradeeba SJ, Sampath K, Ramadevi A (2018) Photo-catalytic degradations of methylene blue, malachite green and Bismarck brown using poly(azomethine)/TiO2 nanocomposite. Cluster Comput 21:1–17CrossRefGoogle Scholar
  42. 42.
    Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750CrossRefGoogle Scholar
  43. 43.
    Chern S, Xiao Y, Wang Y, Hu Z, Zhao H, Xie W (2018) A facile approach to prepare black TiO2 with oxygen vacancy for enhancing photocatalytic activity. Nanomaterials 8:245CrossRefGoogle Scholar
  44. 44.
    Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986CrossRefGoogle Scholar
  45. 45.
    Wu MC, Chen CH, Huang WK, Hsiao KC, Lin TH, Chan SH, Wu PY, Lu CF, Chang YH, Lin TF, Hsu KH, Hsu JF, Lee KM, Shyue JJ, Kordás K, Su WF (2017) Improved solar-driven photocatalytic performance of highly crystalline hydrogenated TiO2 nanofibers with core-shell structure. Sci Rep-UK 7:40896CrossRefGoogle Scholar
  46. 46.
    Baransi K, Dubowski Y, Sabbah I (2012) Synergetic effect between photocatalytic degradation and adsorption processes on the removal of phenolic compounds from olive mill wastewater. Water Res 46:789–798CrossRefGoogle Scholar
  47. 47.
    Zhou X, Liu N, Schmuki P (2017) Photocatalysis with TiO2 nanotubes: “colorful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes. ACS Catal 7:3210–3235CrossRefGoogle Scholar
  48. 48.
    Hu MQ, Xing ZP, Cao Y, Li ZZ, Yan X, Xiu ZY, Zhao TY, Yang SL, Zhou W (2018) Ti3+ self-doped mesoporous black TiO2/SiO2/g-C3N4 sheets heterojunctions as remarkable visible-lightdriven photocatalysts. Appl Catal B Environ 226:499–508CrossRefGoogle Scholar
  49. 49.
    Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P (2010) Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 132:11856–11857CrossRefGoogle Scholar
  50. 50.
    Hu W, Zhou W, Zhang K, Zhang X, Wang L, Jiang B, Tian G, Zhao D, Fu H (2016) Facile strategy for controllable synthesis of stable mesoporous black TiO2 hollow spheres with efficient solar-driven photocatalytic hydrogen evolution. J Mater Chem A 4:7495–7502CrossRefGoogle Scholar
  51. 51.
    Li XM, Jiang LF, Zhou C, Liu JP, Zeng HB (2015) Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors. NPG Asia Mater 7:165CrossRefGoogle Scholar
  52. 52.
    Lu XF, Gu LF, Wang JW, Wu JX, Liao PQ, Li GR (2017) Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv Mater 29:1604437CrossRefGoogle Scholar
  53. 53.
    Zhang L, Xing Z, Zhang H, Li Z, Wu X, Zhang X, Zhang Y, Zhou W (2016) High thermostable ordered mesoporous SiO2–TiO2 coated circulating-bed biofilm reactor for unpredictable photocatalytic and biocatalytic performance. Appl Catal B Environ 180:521–529CrossRefGoogle Scholar
  54. 54.
    Nair AS, Zhu PN, Babu VJ, Yang SY, Peng SJ, Ramakrishna S (2012) Highly anisotropic titanates from electrospun TiO2–SiO2 composite nanofibers and rice grain-shaped nanostructures. Rsc Adv 2:992–998CrossRefGoogle Scholar
  55. 55.
    Yang JB, Zhou XD, James WJ, Malik SK, Wang CS (2004) Growth and magnetic properties of MnO2-δ nanowire microspheres. Appl Phys Lett 85:3160–3162CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations