Polymer salt-derived carbon-based nanomaterials for high-performance hybrid Li-ion capacitors

  • Yunpeng Yang
  • Huanlei WangEmail author
  • Wei Liu
  • Jing Shi
  • Guanghe Dong
  • Hao Zhang
  • Dong Li
  • Gaofei Lu
Energy materials


Li-ion capacitors (LICs) combine the merits of supercapacitors and batteries, which are usually fabricated by battery-type anode and supercapacitor-type cathode. The main challenge for LICs is to make kinetics balance between anode and cathode. Herein, we created a LIC based on superabsorbent polymer salt-derived carbon-based nanomaterials. By annealing the Mn2+ adsorbed polymer salt precursor, the obtained MnO/C anode with a high specific surface area of 762 m2 g−1 displays a high capacity of 540 mAh g−1 at 0.1 A g−1 and an excellent capacity retention of 80% after 500 cycles. The hierarchical porous carbon cathode is generated by the combined carbonization and KOH activation techniques, which exhibits an excellent capacitive storage performance. After well-matched capacity and kinetic behavior in both anode and cathode, the LIC possesses a high energy density of 97.3 Wh kg−1 and a superior cycle life with 80% capacity retention after 10000 cycles. This work gives a case study to fabricate high-performance energy storage devices by using environmentally friendly electrodes.



This work was partly supported by National Natural Science Foundation of China (Nos. 21471139, and 51402272) and Fundamental Research Funds for the Central Universities (No. 201822008).

Compliance with ethical standards

Conflict of interest

There is no conflict of interest.

Supplementary material

10853_2019_3423_MOESM1_ESM.doc (1.5 mb)
Supplementary material 1 (DOC 1524 kb)


  1. 1.
    Gür TM (2018) Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci 11:3055CrossRefGoogle Scholar
  2. 2.
    Huang B, Pan Z, Su X, Liang A (2018) Recycling of lithium-ion batteries: recent advances and perspectives. J Power Sources 399:274–286CrossRefGoogle Scholar
  3. 3.
    Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 7:12647–12660CrossRefGoogle Scholar
  4. 4.
    Wang H, Zhu C, Chao D, Yan Q, Fan HJ (2017) Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv Mater 29:1702093CrossRefGoogle Scholar
  5. 5.
    Li B, Zheng J, Zhang H et al (2018) electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv Mater 30:1705670CrossRefGoogle Scholar
  6. 6.
    Wang H, Xu Z, Li Z et al (2014) Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. Nano Lett 14:1987–1994CrossRefGoogle Scholar
  7. 7.
    Wu T, Tu F, Liu S, Zhuang S, Jin G, Pan C (2014) MnO nanorods on graphene as an anode material for high capacity lithium ion batteries. J Mater Sci 49:1861–1867. CrossRefGoogle Scholar
  8. 8.
    Bai T, Zhou H, Zhou X, Liao Q, Chen S, Yang J (2017) N-doped carbon-encapsulated MnO@graphene nanosheet as high-performance anode material for lithium-ion batteries. J Mater Sci 52:11608–11619. CrossRefGoogle Scholar
  9. 9.
    Xiao Y, Cao M (2015) carbon-anchored MnO nanosheets as an anode for high-rate and long-life lithium-ion batteries. ACS Appl Mater Interfaces 7:12840–12849CrossRefGoogle Scholar
  10. 10.
    Zhao Y, Cui Y, Shi J et al (2017) Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors. J Mater Chem A 5:15243–15252CrossRefGoogle Scholar
  11. 11.
    Sheng L, Jiang H, Liu S, Chen M, Wei T, Fan Z (2018) Nitrogen-doped carbon-coated MnO nanoparticles anchored on interconnected graphene ribbons for high-performance lithium-ion batteries. J Power Sources 397:325–333CrossRefGoogle Scholar
  12. 12.
    Puthusseri D, Aravindan V, Madhavi S, Ogale S (2014) 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy Environ Sci 7:728–735CrossRefGoogle Scholar
  13. 13.
    Liu X, Wang H, Cui Y et al (2018) High-energy sodium-ion capacitor assembled by hierarchical porous carbon electrodes derived from Enteromorpha. J Mater Sci 53:6763–6773. CrossRefGoogle Scholar
  14. 14.
    Zhu G, Wang L, Lin H et al (2018) Walnut-Like multicore-shell MnO encapsulated nitrogen-rich carbon nanocapsules as anode material for long-cycling and soft-packed lithium-ion batteries. Adv Funct Mater 30:1800003CrossRefGoogle Scholar
  15. 15.
    Chen LF, Ma SX, Lu S, Feng Y, Zhang J, Xin S, Yu SH (2016) Biotemplated synthesis of three-dimensional porous MnO/C–N nanocomposites from renewable rapeseed pollen: an anode material for lithium-ion batteries. Nano Res 10:1–11CrossRefGoogle Scholar
  16. 16.
    Liu C, Zhang C, Song H, Zhang C, Liu Y, Nan X, Cao G (2016) Mesocrystal MnO cubes as anode for Li-ion capacitors. Nano Energy 22:290–300CrossRefGoogle Scholar
  17. 17.
    Niu J, Liang J, Shao R, Liu M, Dou M, Li Z, Huang Y, Wang F (2017) Tremella-like N, O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors. Nano Energy 41:285–292CrossRefGoogle Scholar
  18. 18.
    Li Z, Xu Z, Wang H, Ding J, Zahiri B, Holt CMB, Tan X, Mitlin D (2014) Colossal pseudocapacitance in a high functionality-high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ Sci 7:1708–1718CrossRefGoogle Scholar
  19. 19.
    Zhang K, Han P, Gu L et al (2012) Synthesis of nitrogen-doped mno/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl Mater Interfaces 4:658–664CrossRefGoogle Scholar
  20. 20.
    Li Z, Ahadi K, Jiang K, Ahvazi B, Li P, Anyia AO, Cadien K, Thundat T (2017) Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors. Nano Res 10:1847–1860CrossRefGoogle Scholar
  21. 21.
    Xia Q, Yang H, Wang M et al (2017) High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode. Adv Energy Mater 7:1701336CrossRefGoogle Scholar
  22. 22.
    Yang H, Xu G, Wei X, Yang M, Guo Q, Wan L, Xia H, Yu Y (2018) Ultrafast hetero-assembly of monolithic interwoven V2O5 nanobelts/carbon nanotubes architectures for high-energy alkali-ion batteries. J Power Sources 395:295–304CrossRefGoogle Scholar
  23. 23.
    Huang Y, Peng L, Liu Y, Zhao G, Chen J, Yu G (2016) Biobased nano porous active carbon fibers for high-performance supercapacitors. ACS Appl Mater Interfaces 8:15205–15215CrossRefGoogle Scholar
  24. 24.
    Zheng X, Lv W, Tao Y et al (2014) Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance. Chem Mater 26:6896–6903CrossRefGoogle Scholar
  25. 25.
    Arnaiz M, Botas C, Carriazo D, Mysyk R, Mijangos F, Rojo T, Ajuria J, Goikolea E (2018) Reduced graphene oxide decorated with SnO2 nanoparticles as negative electrode for lithium ion capacitors. Electrochim Acta 284:542–550CrossRefGoogle Scholar
  26. 26.
    Wang S, Xing Y, Xiao C, Xiao C, Xu H, Zhang S (2016) A peapod-inspired MnO@C core-shell design for lithium ion batteries. J Power Sources 307:11–16CrossRefGoogle Scholar
  27. 27.
    Cui Y, Wang H, Xu X et al (2018) Nitrogen-doped porous carbons derived from a natural polysaccharide for multiple energy storage devices. Sustain Energy Fuels 2:381–391CrossRefGoogle Scholar
  28. 28.
    Wang H, Zhang Y, Ang H et al (2016) A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Funct Mater 26:3082–3093CrossRefGoogle Scholar
  29. 29.
    Xu D, Chen C, Xie J, Zhang B, Miao L, Cai J, Huang Y, Zhang L (2016) A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv Energy Mater 6:1501929CrossRefGoogle Scholar
  30. 30.
    Zhao C, Yu C, Zhang M et al (2017) Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS 2 integrated on carbon fibers. Nano Energy 41:66–74CrossRefGoogle Scholar
  31. 31.
    Chao D, Liang P, Chen Z et al (2016) Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10:10211–10219CrossRefGoogle Scholar
  32. 32.
    Xia X, Chao D, Zhang Y et al (2016) Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 12:3048–3058CrossRefGoogle Scholar
  33. 33.
    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614CrossRefGoogle Scholar
  34. 34.
    Shi Z, Zhang J, Wang J, Shi J, Wang C (2015) Effect of the capacity design of activated carbon cathode on the electrochemical performance of lithium-ion capacitors. Electrochim Acta 153:476–483CrossRefGoogle Scholar
  35. 35.
    Ajuria J, Redondo E, Arnaiz M, Mysyk R, Rojo T, Goikolea E (2017) Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits. J Power Sources 359:17–26CrossRefGoogle Scholar
  36. 36.
    Ajuria J, Arnaiz M, Botas C, Carriazo D, Mysyk R, Rojo T, Av Talyzin, Goikolea E (2017) Graphene-based lithium ion capacitor with high gravimetric energy and power densities. J Power Sources 363:422–427CrossRefGoogle Scholar
  37. 37.
    Li D, Ye C, Chen X, Wang S, Wang H (2018) A high energy and power sodium-ion hybrid capacitor based on nitrogen-doped hollow carbon nanowires anode. J Power Sources 382:116–121CrossRefGoogle Scholar
  38. 38.
    Zhao Q, Yang D, Whittaker AK, Zhao XS (2018) A hybrid sodium-ion capacitor with polyimide as anode and polyimide-derived carbon as cathode. J Power Sources 396:12–18CrossRefGoogle Scholar
  39. 39.
    Lai CM, Kao TL, Tuan HY (2018) Si nanowires/Cu nanowires bilayer fabric as a lithium ion capacitor anode with excellent performance. J Power Sources 379:261–269CrossRefGoogle Scholar
  40. 40.
    Lee JH, Kim HK, Baek E, Pecht M, Lee SH, Lee YH (2016) Improved performance of cylindrical hybrid supercapacitor using activated carbon/niobium doped hydrogen titanate. J Power Sources 301:348–354CrossRefGoogle Scholar
  41. 41.
    Sun X, Zhang X, Liu W, Wang K, Li C, Li Z, Ma Y (2017) Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor. Electrochim Acta 235:158–166CrossRefGoogle Scholar
  42. 42.
    Kim H, Cho MY, Kim MH, Park KY, Gwon H, Lee Y, Roh KC, Kang K (2013) A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv Energy Mater 3:1500–1506CrossRefGoogle Scholar
  43. 43.
    Wang X, Li G, Chen Z, Augustyn V, Ma X, Wang G, Duun B, Lu Y (2011) High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Adv Energy Mater 1:1089–1093CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringOcean University of ChinaQingdaoChina

Personalised recommendations