Journal of Materials Science

, Volume 54, Issue 10, pp 7428–7437 | Cite as

Structural evolution and its effect on multiferroic properties in magnetoelectric 0.67Sm0.12Bi0.88FeO3–0.33BaTiO3 ceramics by tuning the cooling rate

  • Y. Li
  • Y. G. WangEmail author
  • S. D. Zhou
  • H. Wu


The effects of cooling rate on structure and multiferroic properties were investigated in the lead-free 0.67Sm0.12Bi0.88FeO3–0.33BaTiO3 ceramics. Cooling in different medium induces the variations of phase fractions, c/a ratio and the distortion degree of oxygen octahedron, which can effectively regulate the multiferroic properties at room temperature. The high-temperature P4mm phase transforms to the Pm3m phase with the decrement of the cooling rate. The magnetoelectric coupling effect is nonlinearly related to the cooling rate, which is induced by the corresponding distortion in FeO6 octahedron. The ceramic cooled in water shows the largest remnant polarization of ~ 20.9 μC/cm2, while the ceramic cooled in furnace shows large remnant magnetization and magnetoelectric coupling coefficient of ~ 0.50 emu/g and 7.3 mV/(cm Oe), respectively.



This work is supported by the National Natural Science Foundation of China (Grant No. 11174148) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The authors are grateful to Prof. Yang Ying and Prof. Zhu Kongjun (College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, P. R. China) for the electrical experiments.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.


  1. 1.
    Dai HY, Xue RZ, Chen ZP, Li T, Chen J, Xiang HW (2014) Effect of Eu, Ti co-doping on the structural and multiferroic properties of BiFeO3 ceramics. Ceram Int 40:15617–15622CrossRefGoogle Scholar
  2. 2.
    Valant M, Axelsson AK, Alford N (2007) Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem Mater 19:5431–5436CrossRefGoogle Scholar
  3. 3.
    Sangian H, Mirzaee O, Tajally M, Lavasani SANH (2018) Monitoring the Bi/Fe ratio at different pH values in BiFeO3 nanoparticles derived by normal and reverse chemical co-precipitation: a comparative study on the purity, microstructure and magnetic properties. Ceram Int 44:5109–5115CrossRefGoogle Scholar
  4. 4.
    Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B et al (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722CrossRefGoogle Scholar
  5. 5.
    Ruette B, Zvyagin S, Pyatakov AP, Bush A, Li JF, Belotelov VI et al (2004) Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogeneous spin order. Phys Rev B 69:064114CrossRefGoogle Scholar
  6. 6.
    Sando D, Agbelele A, Rahmedov D, Liu J, Rovillain P, Toulouse C et al (2013) Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat Mater 12(7):641–646CrossRefGoogle Scholar
  7. 7.
    Fernández-Posada CM, Castro A, Kiat JM, Porcher F, Peña O, Algueró M et al (2016) A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity. Nat Commun 7:12772CrossRefGoogle Scholar
  8. 8.
    Singh A, Moriyoshi C, Kuroiwa Y, Pandey D (2013) Evidence for local monoclinic structure, polarization rotation, and morphotropic phase transitions in (1 − x)BiFeO3xBaTiO3 solid solutions: a high-energy synchrotron x-ray powder diffraction study. Phys Rev B 88:024113CrossRefGoogle Scholar
  9. 9.
    Kim S, Khanal GP, Nam HW, Fujii I, Ueno S, Moriyoshi C et al (2017) Structural and electrical characteristics of potential candidate lead-free BiFeO3–BaTiO3 piezoelectric ceramics. J Appl Phys 122:164105CrossRefGoogle Scholar
  10. 10.
    Kim JS, Cheon CI, Lee CH, Jang PW (2004) Weak ferromagnetism in the ferroelectric BiFeO3–ReFeO3–BaTiO3 solid solutions (Re = Dy, La). J Appl Phys 96:468–474CrossRefGoogle Scholar
  11. 11.
    Yuan GL, Or SW (2006) Multiferroicity in polarized single-phase Bi0.875Sm0.125FeO3 ceramics. J Appl Phys 100:024109CrossRefGoogle Scholar
  12. 12.
    Chen X, Wang Y, Yang Y, Yuan G, Yin J, Liu Z (2012) Structure, ferroelectricity and piezoelectricity evolutions of Bi1−xSmxFeO3 at various temperatures. Solid State Commun 152:497–500CrossRefGoogle Scholar
  13. 13.
    Yan W, Hou ZL, Bi S, Cui RB, Tang M (2018) Enhanced magnetization and bias voltage-dependent dielectric properties of Sm-doped BiFeO3 multiferroic nanofibers. J Mater Sci 53:10249–10260. CrossRefGoogle Scholar
  14. 14.
    Zhang S, Lu M, Wu D, Chen YF, Ming NB (2005) Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure. Appl Phys Lett 87:262907CrossRefGoogle Scholar
  15. 15.
    Lu J, Pan DA, Yang B et al (2008) Wideband magnetoelectric measurement system with the application of a virtual multi-channel lock-in amplifier. Meas Sci Technol 19:045702CrossRefGoogle Scholar
  16. 16.
    Betancourt-Cantera LG, Bolarín-Miró AM, Cortés-Escobedo CA, Hernández- Cruz LE, Sánchez-De Jesús F (2018) Structural transitions and multiferroic properties of high Ni-doped BiFeO3. J Magn Magn Mater 456:381–389CrossRefGoogle Scholar
  17. 17.
    Köferstein R, Buttlar T, Ebbinghaus SG (2014) Investigations on Bi25FeO40 powders synthesized by hydrothermal and combustion-like processes. J Solid State Chem 217:50–56CrossRefGoogle Scholar
  18. 18.
    Hagiwara M, Fujihara S (2015) Effects of CuO addition on electrical properties of 0.6BiFeO3–0.4(Bi0.5K0.5)TiO3 lead-free piezoelectric ceramics. J Am Ceram Soc 98:469–475CrossRefGoogle Scholar
  19. 19.
    Lu W, Song WD, He K, Chai J, Sun CJ, Chow GM, Chen JS (2013) The role of octahedral tilting in the structural phase transition and magnetic anisotropy in SrRuO3 thin film. J Appl Phys 113:063901CrossRefGoogle Scholar
  20. 20.
    Kim DS, Cheon C, Lee SS, Kim JS (2016) Effect of cooling rate on phase transitions and ferroelectric properties in 0.75BiFeO3–0.25BaTiO3 ceramics. Appl Phys Lett 109:202902CrossRefGoogle Scholar
  21. 21.
    Fisher JG, Rout D, Moon KS, Kang SL (2009) Structural changes in potassium sodium niobate ceramics sintered in different atmospheres. J Alloy Compd 479:467–472CrossRefGoogle Scholar
  22. 22.
    Deka B, Ravi S, Pamu D (2017) Evolution of structural transition, grain growth inhibition and collinear antiferromagnetism in (Bi1−xSmx)FeO3 (x = 0 to 0.3) and their effects on dielectric and magnetic properties. Ceram Int 43:16580–16592CrossRefGoogle Scholar
  23. 23.
    Zhu LF, Zhang BP, Zhao L, Li JF (2014) High piezoelectricity of BaTiO3–CaTiO3–BaSnO3 lead-free ceramics. J Mater Chem C 2:4764–4771CrossRefGoogle Scholar
  24. 24.
    Jha PA, Jha PK, Jha AK, Kotnala RK, Dwivedi RK (2014) Phase transformation and two-mode phonon behavior of (1 − x)[BaZr0.025Ti0.975O3]–(x)[BiFeO3] solid solutions. J Alloys Compd 600:186–192CrossRefGoogle Scholar
  25. 25.
    Pasha UM, Zheng H, Thakur OP, Feteira A, Whittle KR, Sinclair DC et al (2007) In situ Raman spectroscopy of A-site doped barium titanate. Appl Phys Lett 91:062908CrossRefGoogle Scholar
  26. 26.
    Liu NT, Liang RH, Zhao XB, Zhang YY, Zhou ZY, Tang XD et al (2018) Tailoring domain structure through manganese to modify the ferroelectricity, strain and magnetic properties of lead-free BiFeO3-based multiferroic ceramics. J Alloys Compd 740:470–476CrossRefGoogle Scholar
  27. 27.
    Zheng T, Wu JG (2016) Quenched bismuth ferrite-barium titanate lead-free piezoelectric ceramics. J Alloys Compd C 676:505–512CrossRefGoogle Scholar
  28. 28.
    Li Q, Wei J, Tu T, Cheng J, Chen J (2017) Remarkable piezoelectricity and stable high-temperature dielectric properties of quenched BiFeO3–BaTiO3 ceramics. J Am Ceram Soc 100:5573–5583CrossRefGoogle Scholar
  29. 29.
    Leontsev SO, Eitel RE (2009) Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3xBaTiO3 Ceramics. J Am Ceram Soc 92:2957–2961CrossRefGoogle Scholar
  30. 30.
    Zhou W, Zheng QJ, Li Y, Li Q, Wan Y, Wu M, Lin DM (2015) Structure, ferroelectric, ferromagnetic, and piezoelectric properties of Al-modified BiFeO3–BaTiO3 multiferroic ceramics. Phys Status Solidi A 212:632–639CrossRefGoogle Scholar
  31. 31.
    Prihor F, Ianculescu A, Mitoseriu L, Postolache P, Curecheriu L, Dragan N, Crisan D (2009) Functional properties of the (1-x)BiFeO3xBaTiO3 solid solutions. Ferroelectrics 391:76–82CrossRefGoogle Scholar
  32. 32.
    Gotardo RAM, Silva EFR, Montanher DZ, Santos GM, Silva KL, Cótica LF et al (2017) Improved magnetic properties and structural characterizations in Mn doped 0.9BiFeO3–0.1BaTiO3 compositions. Scr Mater 130:161–164CrossRefGoogle Scholar
  33. 33.
    Gupta R, Shah J, Chaudhary S, Singh S, Kotnala RK (2013) Magnetoelectric coupling-induced anisotropy in multiferroic nanocomposite (1-x)BiFeO3xBaTiO3. J Nanopart Res 15:2004CrossRefGoogle Scholar
  34. 34.
    Alka R, Jayant K, Prakash G (2018) Structural, electrical, magnetic and magnetoelectric properties of Co-doped BaTiO3 multiferroic ceramics. Ceram Int 44:16703–16711CrossRefGoogle Scholar
  35. 35.
    Miah MJ, Khan MNI, Akther Hossain AKM (2016) Synthesis and enhancement of multiferroic properties of (x)Ba0.95Sr0.05TiO3–(1 − x)BiFe0.90Dy0.10O3 ceramics. J Magn Magn Mater 397:39–50CrossRefGoogle Scholar
  36. 36.
    Friessnegg T, Aggarwal S, Ramesh R et al (2000) Vacancy formation in (Pb, La)(Zr, Ti)O3 capacitors with oxygen deficiency and the effect on voltage offset. Appl Phys Lett 77:127–129CrossRefGoogle Scholar
  37. 37.
    Marzouki A, Harzali H, Loyau V, Gemeiner P, Zehani K, Dkhil B et al (2018) Large magnetoelectric response and its origin in bulk Co-doped BiFeO3 synthesized by a stirred hydrothermal process. Acta Mater 145:316–321CrossRefGoogle Scholar
  38. 38.
    Wang QQ, Wang Z, Liu XQ, Chen XM, Johnson DW (2012) Improved structure stability and multiferroic characteristics in CaTiO3–modified BiFeO3 ceramics. J Am Ceram Soc 95:670–675CrossRefGoogle Scholar
  39. 39.
    Shi XX, Liu XQ, Chen XM (2017) Readdressing of magnetoelectric effect in bulk BiFeO3. Adv Funct Mater 27:1604037CrossRefGoogle Scholar
  40. 40.
    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y (2003) Magnetic control of ferroelectric polarization. Nature 426:55–58CrossRefGoogle Scholar
  41. 41.
    Frey MH, Payne DA (1996) Grain-size effect on structure and phase transformations for barium titanate. Phys Rev B 54:3158–3168CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations