Advertisement

Journal of Materials Science

, Volume 54, Issue 9, pp 6841–6852 | Cite as

Synthesis and encapsulation of all inorganic perovskite nanocrystals by microfluidics

  • Zhan Wei
  • Ying Chen
  • Pengcheng LinEmail author
  • Qi Yan
  • Yufeng Fan
  • Zhengdong ChengEmail author
Chemical routes to materials
  • 20 Downloads

Abstract

All inorganic perovskite nanocrystals (AIPNCs) have attracted tremendous research interest due to their fascinating properties in the field of photoelectron. Conventional synthesis of AIPNCs is usually conducted by using batch reactions under gas protection at high temperatures. Herein, an automated microreactor platform consisting of flow-focusing microfluidics is firstly applied to synthesize AIPNCs without gas protection at room temperature. The nucleation and growth is based on the ultrafast mixing and phase separation in low-toxicity solvent. The AIPNCs formed in the microreactor have good crystallinity and narrow size distribution. Meanwhile, the flow-focusing microfluidics also can be used to encapsulate AIPNCs into templated microspheres to improve their stability against temperature, light and water. Furthermore, the as-constructed AIPNC spheres exhibiting linear temperature response represent their promising microthermometer application. It is envisioned that the microfluidic technique provides another alternative to synthesize Ni2+-doped, Ce3+-doped, Yb3+-doped, Bi3+-substituted AIPNCs or organic–inorganic hybrid perovskite nanocrystals and to fabricate templated AIPNC materials and devices.

Notes

Acknowledgements

The authors gratefully acknowledge the support of National Natural Science Foundation of China (No. 61805047), the Guangzhou Science Technology and Innovation Commission (No. 201807010108), Foshan Municipal Science and Technology Bureau project 2015IT100162 and the Innovative Project of College Students 201811845154, 201711845154 and xj201711845085.

Compliance with ethical standards

Conflict of interest

The authors declare there is no conflict of interest.

Supplementary material

10853_2019_3397_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2563 kb)

References

  1. 1.
    Protesescu L, Yakunin S, Bodnarchuk MI et al (2015) Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 6:3692–3696Google Scholar
  2. 2.
    Song J, Li J, Li X et al (2015) Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater 27:7162–7167Google Scholar
  3. 3.
    Lim SC, Lin HP, Tsai WL et al (2017) Binary halide, ternary perovskite-like, and perovskite-derivative nanostructures: hot injection synthesis and optical and photocatalytic properties. Nanoscale 9:3747–3751Google Scholar
  4. 4.
    Amgar D, Binyamin T, Uvarov V et al (2018) Near ultra-violet to mid-visible band gap tuning of mixed cation RbxCs1−xPbX3 (X = Cl or Br) perovskite nanoparticles. Nanoscale 10:6060–6068Google Scholar
  5. 5.
    Akkerman QA, D’Innocenzo V, Accornero S et al (2015) Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J Am Chem Soc 137:10276–10281Google Scholar
  6. 6.
    Li X, Cao F, Yu D et al (2017) All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small 13:1603996Google Scholar
  7. 7.
    Song JZ, Li JH, Xu LM et al (2018) Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv Mater 30:1800764Google Scholar
  8. 8.
    Li JH, Xu LM, Wang T et al (2017) 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater 29:1603885Google Scholar
  9. 9.
    Song JZ, Xu LM, Li JH et al (2016) Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv Mater 28:4861Google Scholar
  10. 10.
    Song JZ, Fang T, Li JH et al (2018) Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv Mater.  https://doi.org/10.1002/adma.201805409 Google Scholar
  11. 11.
    Zhang X, Xu B, Zhang J et al (2016) All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3–CsPb2Br5 composites. Adv Funct Mater 26:4595–4600Google Scholar
  12. 12.
    Liang J, Wang C, Wang Y et al (2016) All-inorganic perovskite solar cells. J Am Chem Soc 138:15829–15832Google Scholar
  13. 13.
    Wang Y, Li X, Song J et al (2015) All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv Mater 27:7101–7108Google Scholar
  14. 14.
    Nedelcu G, Protesescu L, Yakunin S et al (2015) Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett 5:5635–5640Google Scholar
  15. 15.
    Zhang D, Eaton SW, Yu Y et al (2015) Solution-phase synthesis of cesium lead halide perovskite nanowires. J Am Chem Soc 137:9230–9233Google Scholar
  16. 16.
    Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13:838Google Scholar
  17. 17.
    Rui M, Li X, Gan L et al (2016) Ternary oxide nanocrystals: universal laser-hydrothermal synthesis, optoelectronic and electrochemical applications. Adv Funct Mater 26:5051–5060Google Scholar
  18. 18.
    Loiudice A, Saris S, Oveisi E et al (2017) CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew Chem Int Ed 56:10696–10701Google Scholar
  19. 19.
    Hai J, Li H, Zhao Y et al (2017) Designing of blue, green, and red CsPbX3 perovskite-codoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission. Chem Commun 53:5400–5403Google Scholar
  20. 20.
    Wang Y, Zhu Y, Huang J et al (2016) CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium. J Phys Chem Lett 7:4253–4258Google Scholar
  21. 21.
    Pan A, Jurow MJ, Qiu F et al (2017) Nanorod suprastructures from a ternary graphene oxide–polymer–CsPbX3 perovskite nanocrystal composite that display high environmental stability. Nano Lett 17:6759–6765Google Scholar
  22. 22.
    Liu X, Niu L, Wu C et al (2016) Periodic organic–inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing. Adv Sci 3:1600137Google Scholar
  23. 23.
    Wang HC, Lin SY, Tang AC et al (2016) Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew Chem Int Ed 55:7924–7929Google Scholar
  24. 24.
    Zhao X, Liu Y, Yu Y et al (2018) Hierarchically porous composite microparticles from microfluidics for controllable drug delivery. Nanoscale 10:12595–12604Google Scholar
  25. 25.
    Chao Y, Mak SY, Rahman S et al (2018) Generation of high-order all-aqueous emulsion drops by osmosis-driven phase separation. Small 14:1802107Google Scholar
  26. 26.
    Liu Y, Jiang X (2017) Why microfluidics? Merits and trends in chemical synthesis. Lab Chip 17:3960–3978Google Scholar
  27. 27.
    Chen LJ, Gong LL, Lin YL et al (2016) Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers. Lab Chip 16:1206–1213Google Scholar
  28. 28.
    Feng Q, Sun J, Jiang X (2016) Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications. Nanoscale 8:12430–12443Google Scholar
  29. 29.
    Yan Q, Wei Z, Lin PC et al (2018) Polymer stabilized cholesteric liquid crystal particles with high thermal stability. Opt Mater Express 8:1536Google Scholar
  30. 30.
    Mou CL, Wang W, Li ZL et al (2018) Trojan horse like stimuli-responsive microcapsules. Adv Sci 5:1700960Google Scholar
  31. 31.
    Lin P, Yan Q, Wei Z et al (2018) Chiral photonic crystalline microcapsules with strict monodispersity, ultrahigh thermal stability, and reversible response. ACS Appl Mater Interfaces 10:18289–18299Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and EnergyGuangdong University of TechnologyGuangzhouChina
  2. 2.Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations