Advertisement

One-pot synthesized mesoporous C-TiO2 hybrid for Ru-catalyzed low-temperature hydrogenation of benzoic acid

  • Haifu Zhang
  • Guoqiang Li
  • Renfeng NieEmail author
  • Xinhuan Lu
  • Qinghua XiaEmail author
Chemical routes to materials
  • 5 Downloads

Abstract

A well-designed C-TiO2 hybrid with high surface area (183 m2/g) and highly dispersed nano-TiO2 on carbon was prepared by a facial one-pot hydrothermal reaction using glucose as structure-directing agent and carbon source. The utilization of glucose in hydrothermal process controls the nucleation and growth of TiO2 particles, and the rota-crystallization (hydrothermal crystallization at certain rotating rate) further introduces a uniform TiO2-layer on the carbon particles. The nanosized TiO2 particles and interconnected nanopores of the C-TiO2 hybrid greatly improve the catalytic activity of Ru NPs for selective hydrogenation of benzoic acid (BA) to cyclohexane carboxylic acid in water at low temperature (as low as 50 °C), and the TOF can achieve as high as 283 h−1. Compared with static crystallization, rota-crystallization endows Ru/C-TiO2 higher surface area, easier reducibility of Ru species and higher stability of Ru/C-TiO2 for selective hydrogenation of BA.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (21603066, 21503074, 21673069), Natural Science Fund of Hubei Province (2015CFB232), Natural Science Fund of the Education Department of Hubei Province (Q2015009).

Supplementary material

10853_2019_3396_MOESM1_ESM.docx (20.5 mb)
Supplementary material 1 (DOCX 21035 kb)

References

  1. 1.
    Stanislaus A, Cooper BH (1994) Aromatic hydrogenation catalysis: a review. Catal Rev 36:75–123.  https://doi.org/10.1080/01614949408013921 CrossRefGoogle Scholar
  2. 2.
    Surkus AE, Junge K, Topf C, Radnik J, Kreyenschulte C, Beller M (2016) Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon–nitrogen matrix. Nat Commun 7:11326–11334.  https://doi.org/10.1038/ncomms11326 CrossRefGoogle Scholar
  3. 3.
    Shinkai H, Toi K, Kumashiro I, Seto Y, Fukuma M, Dan K, Toyoshima S (1988) N-Acylphenylalanines and related compounds. A new class of oral hypoglycemic agents. J Med Chem 31:2092–2097.  https://doi.org/10.1021/jm00119a007 CrossRefGoogle Scholar
  4. 4.
    Moore BS, Cho H, Casati R, Kennedy E, Reynolds KA, Mocek U, Beale JM, Floss HG (1993) Biosynthetic studies on ansatrienin A. Formation of the cyclohexanecarboxylic acid moiety. J Am Chem Soc 115:5254–5266.  https://doi.org/10.1021/ja00065a042 CrossRefGoogle Scholar
  5. 5.
    Zhang P, Wu T, Hou M, Ma J, Liu H, Jiang T, Wang W, Wu C, Han B (2014) The hydrogenation of aromatic compounds under mild conditions by using a solid lewis acid and supported palladium catalyst. ChemCatChem 6:3323–3327.  https://doi.org/10.1002/cctc.201402671 CrossRefGoogle Scholar
  6. 6.
    Chen B, Dingerdissen U, Krauter JGE, Lansink Rotgerink HGJ, Möbus K, Ostgard DJ, Panster P, Riermeier TH, Seebald S, Tacke T, Trauthwein H (2005) New developments in hydrogenation catalysis particularly in synthesis of fine and intermediate chemicals. Appl Catal A 280:17–46.  https://doi.org/10.1016/j.apcata.2004.08.025 CrossRefGoogle Scholar
  7. 7.
    Gaude DLR, Luche JL, Pierre JL (1984) Activation de reactions par les polyoxydes d′ethylene III: reductions par l′eutectique sodium–potassium. Tetrahedron Lett 25:5897–5898.  https://doi.org/10.1016/S0040-4039(01)81714-7 CrossRefGoogle Scholar
  8. 8.
    Pojer PM (1984) “Deuterated” raney nickel: deuteration (reduction) of alkenes, carbonyl compounds and aromatic rings. Proton–deuterium exchange of “activated” aliphatic and aromatic ring hydrogens. Tetrahedron Lett 25:2507–2508.  https://doi.org/10.1016/S0040-4039(01)81217-X CrossRefGoogle Scholar
  9. 9.
    Bai G, Wen X, Zhao Z, Li F, Dong H, Qiu M (2013) Chemoselective hydrogenation of benzoic acid over Ni–Zr–B–PEG (800) nanoscale amorphous alloy in water. Ind Eng Chem Res 52:2266–2272.  https://doi.org/10.1021/ie303602n CrossRefGoogle Scholar
  10. 10.
    Wen X, Cao Y, Qiao X, Niu L, Huo L, Bai G (2015) Significant effect of base on the improvement of selectivity in the hydrogenation of benzoic acid over NiZrB amorphous alloy supported on γ-Al2O3. Catal Sci Technol 5:3281–3287.  https://doi.org/10.1039/c5cy00115c CrossRefGoogle Scholar
  11. 11.
    Lin W, Cheng H, Ming J, Yu Y, Zhao F (2012) Deactivation of Ni/TiO2 catalyst in the hydrogenation of nitrobenzene in water and improvement in its stability by coating a layer of hydrophobic carbon. J Catal 291:149–154.  https://doi.org/10.1016/j.jcat.2012.04.020 CrossRefGoogle Scholar
  12. 12.
    Bai G, Dong H, Zhao Z, Chu H, Wen X, Liu C, Li F (2014) Effect of support and solvent on the activity and stability of NiCoB amorphous alloy in cinnamic acid hydrogenation. RSC Adv 4:19800–19805.  https://doi.org/10.1039/C4RA01837K CrossRefGoogle Scholar
  13. 13.
    Nie R, Jiang H, Lu X, Zhou D, Xia Q (2016) Highly active electron-deficient Pd clusters on N-doped active carbon for aromatic ring hydrogenation. Catal Sci Technol 6:1913–1920.  https://doi.org/10.1039/c5cy01418b CrossRefGoogle Scholar
  14. 14.
    Jiang H, Yu X, Nie R, Lu X, Zhou D, Xia Q (2016) Selective hydrogenation of aromatic carboxylic acids over basic N-doped mesoporous carbon supported palladium catalysts. Appl Catal A 520:73–81.  https://doi.org/10.1016/j.apcata.2016.04.009 CrossRefGoogle Scholar
  15. 15.
    Wang H, Zhao F (2007) Catalytic ring hydrogenation of benzoic acid with supported transition metal catalysts in scCO2. Int J Mol Sci 8:628–634.  https://doi.org/10.3390/i8070628 CrossRefGoogle Scholar
  16. 16.
    Jin Y, Makida Y, Uchida T, Kuwano R (2018) Ruthenium-catalyzed chemo-and enantioselective hydrogenation of isoquinoline carbocycles. J Org Chem 83:3829–3839.  https://doi.org/10.1021/acs.joc.8b00190 CrossRefGoogle Scholar
  17. 17.
    Tang M, Mao S, Li M, Wei Z, Xu F, Li H, Wang Y (2015) RuPd alloy nanoparticles supported on N-doped carbon as an efficient and stable catalyst for benzoic acid hydrogenation. ACS Catal 5:3100–3107.  https://doi.org/10.1021/acscatal.5b00037 CrossRefGoogle Scholar
  18. 18.
    Jiang Z, Lan G, Liu X, Tang H, Li Y (2016) Solid state synthesis of Ru–MC with highly dispersed semi-embedded ruthenium nanoparticles in a porous carbon framework for benzoic acid hydrogenation. Catal Sci Technol 6:7259–7266.  https://doi.org/10.1039/c6cy01049k CrossRefGoogle Scholar
  19. 19.
    Iqbal S, Liu X, Aldosari OF, Miedziak PJ, Edwards JK, Brett GL, Akram A, King GM, Davies TE, Morgan DJ, Knight DK, Hutchings GJ (2014) Conversion of furfuryl alcohol into 2-methylfuran at room temperature using Pd/TiO2 catalyst. Catal Sci Technol 4:2280–2286.  https://doi.org/10.1039/c4cy00184b CrossRefGoogle Scholar
  20. 20.
    Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au–Pd/TiO2 catalysts. Science 311:362–365.  https://doi.org/10.1126/science.1120560 CrossRefGoogle Scholar
  21. 21.
    Zhou G, Dong Y, He D (2018) Bimetallic Ru-M/TiO2 (M = Fe, Ni, Cu, Co) nanocomposite catalysts facribated by galvanic replacement: structural elucidation and catalytic behavior in benzene selective hydrogenation. Appl Surf Sci 456:1004–1013.  https://doi.org/10.1016/j.apsusc.2018.06.206 CrossRefGoogle Scholar
  22. 22.
    Ouyang W, Munoz-Batista M, Fernandez-Garcia M, Luque R (2018) Highly active catalytic Ru/TiO2 nanomaterials for continuous flow production of γ-valerolactone. Chemsuschem 11:2604–2611.  https://doi.org/10.1002/cssc.201800667 CrossRefGoogle Scholar
  23. 23.
    Liu K, Huang X, Pidko EA, Hensen EJ (2018) Hydrogenation of lactic acid to 1, 2-propanediol over Ru-based catalysts. ChemCatChem 10:810–817.  https://doi.org/10.1002/cctc.201701329 CrossRefGoogle Scholar
  24. 24.
    Yoshida H, Igarashi N, Si Fujita, Panpranot J, Arai M (2014) Influence of crystallite size of TiO2 supports on the activity of dispersed Pt catalysts in liquid-phase selective hydrogenation of 3-nitrostyrene, nitrobenzene, and styrene. Catal Lett 145:606–611.  https://doi.org/10.1007/s10562-014-1404-4 CrossRefGoogle Scholar
  25. 25.
    Demazeau G (2007) Solvothermal reactions: an original route for the synthesis of novel materials. J Mater Sci 43:2104–2114.  https://doi.org/10.1007/s10853-007-2024-9 CrossRefGoogle Scholar
  26. 26.
    Zhuang J, Tian Q, Zhou H, Liu Q, Liu P, Zhong H (2012) Hierarchical porous TiO2@C hollow microspheres: one-pot synthesis and enhanced visible-light photocatalysis. J Mater Chem 22:7036–7042.  https://doi.org/10.1039/c2jm16924j CrossRefGoogle Scholar
  27. 27.
    Wang B, Xin H, Li X, Cheng J, Yang G, Nie F (2014) Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Sci Rep 4:3729–3736.  https://doi.org/10.1038/srep03729 CrossRefGoogle Scholar
  28. 28.
    Miao R, Luo Z, Zhong W, Chen SY, Jiang T, Dutta B, Nasr Y, Zhang Y, Suib SL (2016) Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst. Appl Catal B 189:26–38.  https://doi.org/10.1016/j.apcatb.2016.01.070 CrossRefGoogle Scholar
  29. 29.
    Kominami H, Kato J, Takada Y, Doushi Y, Ohtani B, Nishimoto S, Inoue M, Inui T, Kera Y (1997) Novel synthesis of microcrystalline titanium(IV) oxide having high thermal stability and ultra-high photocatalytic activity: thermal decomposition of titanium(IV) alkoxide in organic solvents. Catal Lett 46:235–240.  https://doi.org/10.1023/a:1019022719479 CrossRefGoogle Scholar
  30. 30.
    Zhou D, Zhang T, Xia Q, Zhao Y, Lv K, Lu X, Nie R (2016) One-pot rota-crystallized hollownest-structured Ti–zeolite: a calcination-free and recyclable catalytic material. Chem Sci 7:4966–4972.  https://doi.org/10.1039/c6sc01735e CrossRefGoogle Scholar
  31. 31.
    Vinu A (2008) Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content. Adv Funct Mater 18:816–827.  https://doi.org/10.1002/adfm.200700783 CrossRefGoogle Scholar
  32. 32.
    Nie R, Wang J, Wang L, Qin Y, Chen P, Hou Z (2012) Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon 50:586–596.  https://doi.org/10.1016/j.carbon.2011.09.017 CrossRefGoogle Scholar
  33. 33.
    Cao FF, Guo YG, Zheng SF, Wu XL, Jiang LY, Bi RR, Wan LJ, Maier J (2010) Symbiotic coaxial nanocables: facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem Mater 22:285–318.  https://doi.org/10.1021/cm9036742 CrossRefGoogle Scholar
  34. 34.
    Kovtunov KV, Barskiy DA, Salnikov OG, Burueva DB, Khudorozhkov AK, Bukhtiyarov AV, Prosvirin IP, Gerasimov EY, Bukhtiyarov VI, Koptyug IV (2015) Strong metal-support interactions for palladium supported on TiO2 catalysts in the heterogeneous hydrogenation with parahydrogen. ChemCatChem 7:2581–2584.  https://doi.org/10.1002/cctc.201500618 CrossRefGoogle Scholar
  35. 35.
    Xu X, Tang M, Li M, Li H, Wang Y (2014) Hydrogenation of benzoic acid and derivatives over Pd nanoparticles supported on N-doped carbon derived from glucosamine hydrochloride. ACS Catal 4:3132–3135.  https://doi.org/10.1021/cs500859n CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical EngineeringHubei UniversityWuhanPeople’s Republic of China

Personalised recommendations