Advertisement

Journal of Materials Science

, Volume 54, Issue 9, pp 7028–7034 | Cite as

Dissolution of antiphase domain boundaries in GaAs on Si(001) via post-growth annealing

  • C. S. C. Barrett
  • A. AtassiEmail author
  • E. L. Kennon
  • Z. Weinrich
  • K. Haynes
  • X.-Y. Bao
  • P. Martin
  • K. S. Jones
Electronic materials
  • 34 Downloads

Abstract

GaAs-on-Si epitaxial crystal quality has historically been limited by a number of growth-related defects. In particular, antiphase domain boundaries (APBs) can nucleate at the GaAs/Si interface and propagate throughout the entire GaAs layer. Still little is known about how thermal processing can affect the APB density in GaAs. In this study, GaAs was grown on nominally on-axis Si(001) by metal–organic chemical vapor deposition. The effect of ex situ post-growth annealing was evaluated for a temperature range of 550–700 °C. It was found that upon annealing the APB density was decreased significantly. The rate of APB density decrease was found to be temperature dependent. At annealing temperatures of 650 °C and above, the APB density was reduced from 0.10 μm−1 to approximately 0.010 μm−1 in less than 10 min. The activation energy for APB dissolution was determined to be 3.8 eV. The mechanism of APB dissolution is discussed.

Notes

Acknowledgements

This work is funded through a research grant by Applied Materials. The Research Service Centers at the University of Florida is acknowledged for the use of its sample characterization and preparation facilities. Authors C. S. C. Barrett, E. L. Kennon, Z. Weinrich, K. Haynes, and K. S. Jones have received research grants from Applied Materials, Inc., and K. S. Jones has consulted for Applied Materials.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Dennard RH, Gaensslen FH, Rideout VL, Bassous E, LeBlanc AR (1974) Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circuits 9:256–268CrossRefGoogle Scholar
  2. 2.
    Cipro R, Baron T, Martin M, Moeyaert J, David S, Gorbenko V, Bassani F, Bogumilowicz Y, Barnes JP, Rochat N, Loup V, Vizioz C, Allouti N, Chauvin N, Bao XY, Ye Z, Pin JB, Sanchez E (2014) Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices. Appl Phys Lett 104:262103-1–262103-15CrossRefGoogle Scholar
  3. 3.
    Wood B, Hatem C, Bao X, Zhou H, Zhang M, Jin M, Chen H, Cai MP, Munnangi SS, Okazaki M, Sanchez E, Brand A (2015) International symposium on VLSI technology, systems and application, pp 1–2Google Scholar
  4. 4.
    Fang SF, Adomi K, Iyer S, Morkoç H, Zabel H, Choi C, Otsuka N (1990) Gallium arsenide and other compound semiconductors on silicon. J Appl Phys 68:R31–R58CrossRefGoogle Scholar
  5. 5.
    Kawabe M, Ueda T (1987) Self-annihilation of antiphase boundary in GaAs on Si(100) grown by molecular beam epitaxy. Jpn J Appl Phys 26:L944–L946CrossRefGoogle Scholar
  6. 6.
    Grundmann M, Krost A, Bimberg D (1998) Observation of the first-order phase transition from single to double stepped Si(001) in metalorganic chemical vapor deposition of InP on Si. J Vac Sci Technol B Microelectron Nanometer Struct 9:2158–2166CrossRefGoogle Scholar
  7. 7.
    Mori H, Tachikawa M, Sugo M, Itoh Y (1993) GaAs heteroepitaxy on an epitaxial Si surface with a low-temperature process. Appl Phys Lett 63:1963–1965CrossRefGoogle Scholar
  8. 8.
    Bogumilowicz Y, Hartmann JM, Cipro R, Alcotte R, Martin M, Bassani F, Moeyaert J, Baron T, Pin JB, Bao X, Ye Z, Sanchez E (2015) Anti-phase boundaries–Free GaAs epilayers on “quasi-nominal” Ge-buffered silicon substrates. Appl Phys Lett 107:212105-1–212105-4CrossRefGoogle Scholar
  9. 9.
    Sakamoto T, Hashiguchi G (1986) Si(001)-2 × 1 single-domain structure obtained by high temperature annealing. Jpn J Appl Phys 25:L78–L80CrossRefGoogle Scholar
  10. 10.
    Aspnes DE, Ihm J (1986) Biatomic steps on (001) silicon surfaces. Phys Rev Lett 57:3054–3057CrossRefGoogle Scholar
  11. 11.
    Akiyama M, Kawarada Y, Ueda T, Nishi S, Kaminishi K (1986) Growth of high quality GaAs layers on Si substrates by MOCVD. J Cryst Growth 77:490–497CrossRefGoogle Scholar
  12. 12.
    Ueda O, Soga T, Jimbo T, Umeno M (1989) Direct evidence for self-annihilation of antiphase domains in GaAs/Si heterostructures. Appl Phys Lett 55:445CrossRefGoogle Scholar
  13. 13.
    Georgakilas A, Stoemenos J, Tsagaraki K, Komninou P, Flevaris N, Panayotatos P, Christou A (1993) Generation and annihilation of antiphase domain boundaries in GaAs on Si grown by molecular beam epitaxy. J Mater Res 8:1908–1921CrossRefGoogle Scholar
  14. 14.
    Alberts V, Neethling JH, Leitch AW (1994) Correlation between structural, optical, and electrical properties of GaAs grown on (001) Si. J Appl Phys 75:7258–7265CrossRefGoogle Scholar
  15. 15.
    Yang VK, Groenert M, Leitz CW, Pitera AJ, Currie MT, Fitzgerald EA (2003) Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates. J Appl Phys 93:3859–3865CrossRefGoogle Scholar
  16. 16.
    Choi C, Otsuka N, Munns G, Houdre R, Morkoç H, Zhang SL, Levi D, Klein MV (1987) Effect of in situ and ex situ annealing on dislocations in GaAs on Si substrates. Appl Phys Lett 50:992–994CrossRefGoogle Scholar
  17. 17.
    Yamaguchi M, Tachikawa M, Itoh Y, Sugo M, Kondo S (1990) Thermal annealing effects of defect reduction in GaAs on Si substrates. J Appl Phys 68:4518–4522CrossRefGoogle Scholar
  18. 18.
    Ayers JE, Schowalter LJ, Ghandhi SK (1992) Post-growth thermal annealing of GaAs on Si(001) grown by organometallic vapor phase epitaxy. J Cryst Growth 125:329–335CrossRefGoogle Scholar
  19. 19.
    Chu SNG, Nakahara S, Pearton SJ, Boone T, Vernon SM (1988) Antiphase domains in GaAs grown by metalorganic chemical vapor deposition on silicon-on-insulator. J Appl Phys 64:2981–2989CrossRefGoogle Scholar
  20. 20.
    Létoublon A, Guo W, Cornet C, Boulle A, Véron M, Bondi A, Durand O, Rohel T, Dehaese O, Chevalier N, Bertru N, Le Corre A (2011) X-ray study of antiphase domains and their stability in MBE grown GaP on Si. J Cryst Growth 323:409–412CrossRefGoogle Scholar
  21. 21.
    Guo W, Bondi A, Cornet C, Létoublon A, Durand O, Rohel T, Boyer-Richard S, Bertru N, Loualiche S, Even J, Le Corre A (2012) Thermodynamic evolution of antiphase boundaries in GaP/Si epilayers evidenced by advanced X-ray scattering. Appl Surf Sci 258:2808–2815CrossRefGoogle Scholar
  22. 22.
    Yang R, Su N, Bonfanti P, Nie J, Ning J, Li TT (2010) Advanced in situ pre-Ni silicide (Siconi) cleaning at 65 nm to resolve defects in NiSix modules. J Vac Sci Technol B 28:56–61CrossRefGoogle Scholar
  23. 23.
    Barrett CSC, Lind AG, Bao X, Ye Z, Ban KY, Martin P, Sanchez E, Xin Y, Jones KS (2015) Quantitative correlation of interfacial contamination and antiphase domain boundary density in GaAs on Si(100). J Mater Sci 51:449–456.  https://doi.org/10.1007/s10853-015-9334-0 CrossRefGoogle Scholar
  24. 24.
    Biegelsen DK, Ponce FA, Smith AJ, Tramontana JC (1987) Initial stages of epitaxial growth of GaAs on (100) silicon. J Appl Phys 61:1856–1859CrossRefGoogle Scholar
  25. 25.
    Barrett CSC, Martin TP, Bao X-Y, Kennon EL, Gutierrez L, Martin P, Sanchez E, Jones KS (2016) Effect of bulk growth temperature on antiphase domain boundary annihilation rate in MOCVD-grown GaAs on Si(001). J Cryst Growth 450:39–44CrossRefGoogle Scholar
  26. 26.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  27. 27.
    Cho N-H, Carter CB (2001) Formation, faceting, and interaction behaviors of antiphase boundaries in GaAs thin films. J Mater Sci 36:4209–4222.  https://doi.org/10.1023/A:1017981324721 CrossRefGoogle Scholar
  28. 28.
    Cho N-H, Cooman BCD, Carter CB, Fletcher R, Wagner DK (1985) Antiphase boundaries in GaAs. Appl Phys Lett 47:879–881CrossRefGoogle Scholar
  29. 29.
    Cohen D, Carter CB (2002) Structure of the (110) antiphase boundary in gallium phosphide. J Microsc 208:84–99CrossRefGoogle Scholar
  30. 30.
    Rubel O, Baranovskii SD (2009) Formation energies of antiphase boundaries in GaAs and GaP: an ab initio study. Int J Mol Sci 10:5104–5114CrossRefGoogle Scholar
  31. 31.
    Volz K, Beyer A, Witte W, Ohlmann J, Németh I, Kunert B, Stolz W (2011) GaP-nucleation on exact Si(001) substrates for III/V device integration. J Cryst Growth 315:37–47CrossRefGoogle Scholar
  32. 32.
    Allen SM, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27:1085–1095CrossRefGoogle Scholar
  33. 33.
    Eerenstein W, Palstra TTM, Hibma T, Celotto S (2003) Diffusive motion of antiphase domain boundaries in Fe3O4 films. Phys Rev B 68:14428-1–14428-7CrossRefGoogle Scholar
  34. 34.
    Goapper S, Barbier L, Salanon B, Loiseau A, Torrelles X (1998) Observation of domain structure and coarsening at Cu-Pd alloy vicinal surfaces. Phys Rev B 57:12497–12500CrossRefGoogle Scholar
  35. 35.
    Wager JF (1991) Energetics of self-diffusion in GaAs. J Appl Phys 69:3022–3031CrossRefGoogle Scholar
  36. 36.
    Wang L, Hsu L, Haller EE, Erickson JW, Fischer A, Eberl K, Cardona M (1996) Ga self-diffusion in GaAs isotope heterostructures. Phys Rev Lett 76:2342–2345CrossRefGoogle Scholar
  37. 37.
    Gösele UM, Tan TY, Schultz M, Egger U, Werner P, Scholz R, Breitenstein O (1997) Diffusion in GaAs and related compounds: recent developments. Defect Diffus Forum 143–147:1079–1094CrossRefGoogle Scholar
  38. 38.
    Palfrey HD, Brown M, Willoughby AFW (1983) Self-diffusion in gallium arsenide. J Electron Mater 12:863–877CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Applied MaterialsSanta ClaraUSA

Personalised recommendations