Journal of Materials Science

, Volume 54, Issue 8, pp 6434–6450 | Cite as

The fluorescence self-healing mechanism and temperature-sensitive properties of a multifunctional phosphosilicate phosphor

  • Na Wang
  • Tiejun Li
  • Lili Han
  • Yichao Wang
  • Zhipeng CiEmail author
  • Yuhua Wang
  • Haiyan Jiao
Electronic materials


The temperature-dependent fluorescence characteristic is a key index of rare-earth ion-doped functional materials. In this paper, the structure, photoluminescence property, trap distribution and self-healing mechanism are studied in detail by XRD, photoluminescence spectra, decay times, the temperature-dependent fluorescence characteristic and cathodoluminescence spectrum. We developed a multicationic site phosphosilicate phosphor Ca8Al2(PO4)6(SiO4): Ce3+, Mn2+ to obtain the luminous self-healing property. In this work, we tried to change the energy and density distributions of traps by designing and adjusting synthesis scheme of target material and finally realized self-suppression of emission declined by energy compensation from traps or energy transfer between Ce3+ and Mn2+. As we expected, photoluminescence intensity of Ce3+ and Mn2+ at 250 °C is 40% and 300%, respectively, of their initial intensity at ambient temperature for co-doped representative sample, and it indicates that the emission degeneration of Mn2+ is obviously suppressed with the increase in temperature. A highly thermally sensitive fluorescence intensity ratio is obtained in a broad temperature range, and it implies that this material could be applied to a temperature sensing sensor. The fitting and calculated results show a good signal discriminability with the maximum absolute sensitivity 0.0097 K−1 and maximum relative sensitivity 2.1% K−1, respectively.



This work was supported by the National Natural Science Funds of China (Nos. 11864038 and 51462031), the Natural Science Foundation of Gansu Province of China (Grant No. 1606RJYA262), the Scientific Research Projects of Gansu colleges and Universities (Grant No. 2017A-009), China Postdoctoral Science Foundation (Grant No. 2016M592909XB), Creation of Science and Technology of Northwest Normal University, China (Grant No. NWNU-LKQN-15-9), and the Fundamental Research Funds for the Central Universities (lzujbky-2017-sp23).

Supplementary material

10853_2019_3350_MOESM1_ESM.docx (3.7 mb)
Supplementary material 1 (DOCX 3780 kb)


  1. 1.
    Vetrone F, Naccache R, Zamarron A, Sanz F, Maestro M, Rodriguez M, Jaque D, Sole G, Capobiaco J (2010) Temperature sensing using fluorescent nanothermometers. ACS Nano 4:3254–3258CrossRefGoogle Scholar
  2. 2.
    Zhao Y, Shi C, Yang X, Shen B, Sun Y, Chen Y, Xu X, Sun H, Yu K, Yang B (2016) PH- and temperature-sensitive hydrogel nanoparticles with dual photoluminescence for bioprobes. ACS Nano 10:5856–5863CrossRefGoogle Scholar
  3. 3.
    Bai T, Gu N (2016) Micro/nanoscale thermometry for cellular thermal sensing. Smal 12:4590–4610CrossRefGoogle Scholar
  4. 4.
    Siai A, Haro-Gonzalez P, Horchani-Naifer K, Ferid M (2016) Tm, Yb, Er upconverting nano-oxides for sub-tissue lifetime thermal sensing. Sens Actuators 234:541–548CrossRefGoogle Scholar
  5. 5.
    Peng H, Stich MIJ, Yu J, Sun L, Fischer LH, Wolfbeis OS (2010) Luminescent europium (III) nanoparticles for sensing and imaging of temperature in the physiological range. Adv Mater 22:716–719CrossRefGoogle Scholar
  6. 6.
    Muæoz GH, de la Cruz CL, Muæoz AF, Rubio JO (1988) High-temperature luminescence properties of Eu2+-activated alkali halide phosphor materials. J Mater Sci Lett 7:1310–1312CrossRefGoogle Scholar
  7. 7.
    Blasse G, Grabmaier B (1994) Luminescent materials. Springer, BerlinCrossRefGoogle Scholar
  8. 8.
    Dorenbos P (2005) Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds. J Phys Condens Matter 17:8103CrossRefGoogle Scholar
  9. 9.
    Blasse G (1969) Thermal quenching of characteristic fluorescence. J Chem Phys 51:3529–3530CrossRefGoogle Scholar
  10. 10.
    Kim YH, Arunkumar P, Kim BY, Unithrattil S, Kim E, Moon SH, Hyun JY, Kim KH, Lee D, Lee JS, Im WB (2017) A zero-thermal-quenching phosphor. Nat Mater 16:543–550CrossRefGoogle Scholar
  11. 11.
    Zhang XG, Xu JG, Guo ZY, Gong ML (2017) Luminescence and energy transfer of dual-emitting solid solution phosphors (Ca, Sr)10Li(PO4)7: Ce3+, Mn2+ for ratiometric temperature sensing. Ind Eng Chem Res 56:890–898CrossRefGoogle Scholar
  12. 12.
    Wang JH, Li M, Zheng J, Huang XC, Li D (2014) A dual-emitting Cu6–Cu2–Cu6 cluster as a self-calibrated, wide-range luminescent molecular thermometer. Chem Commun 50:9115–9118CrossRefGoogle Scholar
  13. 13.
    Rao XT, Song T, Gao JK, Cui YJ, Yang Y, Wu CD, Chen BL, Qian GD (2013) A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer. J Am Chem Soc 135:15559–15564CrossRefGoogle Scholar
  14. 14.
    Nurse RW, Welch JH, Gutt W (1959) High-temperature phase equilibria in the system dicalcium silicate–tricalcium phosphate. J Chem Soc 220:1077–1083CrossRefGoogle Scholar
  15. 15.
    Dickens B, Schroeder LW, Brown WE (1974) Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. The crystal structure of pure β-Ca3(PO4)2. J Solid State Chem 10:232–248CrossRefGoogle Scholar
  16. 16.
    Lazoryak BI (1996) Design of inorganic compounds with tetrahedral anions. Russ. Chem Rev 65:287–305Google Scholar
  17. 17.
    Golubev VN, Viting BN, Dogadin OB, Lazoryak BI, Aziev RG (1990) The double phosphates Ca9M(PO4)7. Russ J Inorg Chem 35:1724–1726Google Scholar
  18. 18.
    Wang Q, Ci ZP, Zhu G, Que MD, Xin SY, Wen Y, Wang YH (2012) Structure and photoluminescence properties of Ca9Al(PO4)7: Ce3+, Mn2+ phosphors. ECS J Solid State Sci Technol 1:R92–R97CrossRefGoogle Scholar
  19. 19.
    Li K, Shang MM, Zhang Y, Fan J, Lian HZ, Lin J (2015) Photoluminescence properties of single-component white-emitting Ca9Bi(PO4)7: Ce3+, Tb3+, Mn2+ phosphors for UV LEDs. J Mater Chem C 3:7096–7104CrossRefGoogle Scholar
  20. 20.
    Ji HP, Huang ZH, Xia ZG, Molokeev MS, Atuchin VV, Fang MH, Huang SF (2014) New yellow-emitting whitlockite-type structure Sr1.75Ca1.25(PO4)2: Eu2+ phosphor for near-UV pumped white lightemitting devices. Inorg Chem 53:5129–5135CrossRefGoogle Scholar
  21. 21.
    Lazoryak BI, Strunenkova TV, Vovk EA, Mikhaili VV, Shpinkov IN, Romanenko AY, Schekoldin VN (1996) The new phosphates Ca9MLn2/3 (PO4)7 (M = Li, Na; Ln = rare earth, Y, Bi). Mater Res Bull 31:665–673CrossRefGoogle Scholar
  22. 22.
    Golubev VN, Lazoryak BI (1991) DOUBLE PHOSPHATES Ca9R(PO4)7. Inorg Mater 27:480–483Google Scholar
  23. 23.
    Van Uitert LG (1984) An empirical relation fitting the position in energy of the lower d-band edge for Eu2+ or Ce3+ in various compounds. J Lumin 29:1–9CrossRefGoogle Scholar
  24. 24.
    Pang R, Li C, Shi L, Su Q (2009) A novel blue-emitting long-lasting pyrophosphate phosphor Sr2P2O7: Eu2+, Y3+. J Phys Chem Solids 70:303–306CrossRefGoogle Scholar
  25. 25.
    Ruelle N, Thi MP, Fouassier C (1992) Cathodoluminescent properties and energy transfer in red calcium sulfide phosphors (CaS: Eu, Mn). Jpn J Appl Phys 31:2786–2790CrossRefGoogle Scholar
  26. 26.
    Paulose PI, Jose G, Thomas V, Unnikrishnan NV, Warrier MKR (2003) Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass. J Phys Chem Solids 64:841–846CrossRefGoogle Scholar
  27. 27.
    Reisfeld R, Greenberg E, Velapoldi R, Barnett B (1972) Luminescence quantum efficiency of Gd and Tb in borate glasses and the mechanism of energy transfer between them. J Chem Phys 56:1698–1705CrossRefGoogle Scholar
  28. 28.
    Antipeuko BM, Bataev IM, Ermolaev VL, Lyubimov EI, Privalova TA (1970) Ion-to-ion radiationless transfer of electron excitation energy between rare-earth ions in POCl3-SnCl4. Opt Spectrosc 29:335–338Google Scholar
  29. 29.
    Blasse G (1969) Energy transfer in oxidic phosphors. Philips Res Rep 24:131Google Scholar
  30. 30.
    Zhang XG, Huang YM, Gong ML (2017) Dual-emitting Ce3+, Tb3+ co-doped LaOBr phosphor: luminescence, energy transfer and ratiometric temperature sensing. Chem Eng J 307:291–299CrossRefGoogle Scholar
  31. 31.
    Dexter DL, Schulman JA (1954) Theory of concentration quenching in inorganic phosphors. J Chem Phys 22:1063–1070CrossRefGoogle Scholar
  32. 32.
    Zheng YF, Chen BJ, Zhong HY, Sun JS, Cheng LH, Li XP, Zhang JS, Tian Y, Lu WL, Wan J, Yu TT, Huang LB, Yu HQ, Lin H (2011) Optical transition, excitation state absorption, and energy transfer study of Er3 + , Nd3 + single-doped, and Er3 +/Nd3 + codoped tellurite glasses for mid-infrared laser applications. J Am Ceram Soc 94:1766–1772CrossRefGoogle Scholar
  33. 33.
    You HP, Zhang JL, Hong GY, Zhang HJ (2007) Luminescent properties of Mn2+ in hexagonal aluminates under ultraviolet and vacuum ultraviolet excitation. J Phys Chem 111:10657–10661CrossRefGoogle Scholar
  34. 34.
    Guo HJ, Wang YH, Li G, Liu J, Feng P, Liu DW (2017) Cyan emissive super persistent luminescence and thermoluminescence in BaZrSi3O9:Eu2+, Pr3+ phosphor. J Mater Chem C 5:2844–2851CrossRefGoogle Scholar
  35. 35.
    Eeckhout KVD, Bos AJJ, Poelman D, Smet PF (2013) Revealing trap depth distributions in persistent phosphors. Phys Rev B 87:045126CrossRefGoogle Scholar
  36. 36.
    Jin Y, Hu Y, Yuan L, Chen L, Wu H, Ju G (2016) Multifunctional near-infrared emitting Cr3+-doped Mg4Ga8Ge2O20 particles with long persistent and photostimulated persistent luminescence, and photochromic properties. J Mater Chem C 4:6614–6662CrossRefGoogle Scholar
  37. 37.
    Li XD, Tang X, Wang ZB, Zou ZH, Zhang JC, Ci ZP, Wang YH (2017) Structural, persistent luminescence properties and trap characteristics of an orthosilicate phosphor: LiGaSiO4:Mn2+. J Alloy Compd 721:512–519CrossRefGoogle Scholar
  38. 38.
    Zhang XG, Wu ZC, Mo FW, Li N, Guo ZY, Zhu ZP (2017) Insight into temperature-dependent photoluminescence of LaOBr: Ce3+, Tb3+ phosphor as a ratiometric and colorimetric luminescent thermometer. Dyes Pigm 145:476–485CrossRefGoogle Scholar
  39. 39.
    Brites CDS, Lima PP, Silva NJO, Millán A, Amaral VS, Palacio F, Carlos LD (2013) Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids. Nanoscale 5:7572–7580CrossRefGoogle Scholar
  40. 40.
    Zheng H, Chen BJ, Yu HQ, Li XP, Zhang JS, Sun JS, Tong LL, Wu ZL, Zhong H, Hua RN, Xia HP (2016) Rod-shaped NaY(MoO4)2: Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density. Sens Actuat B-Chem 234:286–293CrossRefGoogle Scholar
  41. 41.
    Gao Y, Huang F, Lin H, Zhou JC, Xu J, Wang YS (2016) A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states. Adv Func Mater 26:3139–3145CrossRefGoogle Scholar
  42. 42.
    Struck CW, Fonger WH (1971) Thermal quenching of Tb3+, Tm3+, Pr3+, and Dy3+ 4fn emitting states in La2O2S. J Appl Phys 42:4515–4516CrossRefGoogle Scholar
  43. 43.
    Brites CDS, Lima PP, Silva NJO, Millán A, Amaral VS, Palacio F, Carlos LD (2010) A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale. Adv Mater 22:4499–4504CrossRefGoogle Scholar
  44. 44.
    Zhang YQ, Chen BJ, Xu S, Li XP, Zhang JS, Sun JS, Zheng H, Tong LL, Sun GZ, Zhong H, Xia HP, Hua NP (2017) Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy. Sci Rep 7:11849CrossRefGoogle Scholar
  45. 45.
    Cao YX, Ding X, Wang YH (2016) A single-phase phosphor NaLa9 (GeO4)6O2: Tm3+, Dy3+ for near ultraviolet-white LED and field-emission display. J Am Ceram Soc 299:3696–3704CrossRefGoogle Scholar
  46. 46.
    Zhang FL, Yang S, Stoffers C, Penczek J, Yocom PN (1998) Low voltage cathodoluminescence properties of blue emitting SrGa2S4: Ce3+ and ZnS: Ag, Cl phosphors. Appl Phys Lett 72:2226–2228CrossRefGoogle Scholar
  47. 47.
    Shang M, Li G, Yang D, Kang X, Peng C, Cheng Z, Lin J (2011) (Zn, Mg)2GeO4: Mn2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties. Dalton Trans 40:9379–9387CrossRefGoogle Scholar
  48. 48.
    Zhang N, Guo C, Jing H (2013) Photoluminescence and cathode-luminescence of Eu3+-doped NaLnTiO4 (Ln = Gd and Y) phosphors. RSC Adv 3:7495–7502CrossRefGoogle Scholar
  49. 49.
    Sun QS, Li XM, Du YD, Zhao B, Li H, Huang Y, Ci ZP, Zhang JC, Ma J, Wang YH (2017) Luminescence mechanism and thermal stabilities of a white silicate phosphor for multifunctional applications. J Am Ceram Soc 100:193–203CrossRefGoogle Scholar
  50. 50.
    Xu X, Chen J, Deng S, Xu N, Liang H, Su Q, Lin J (2012) High luminescent Li2CaSiO4: Eu2+ cyan phosphor film for wide color gamut field emission display. Opt Express 20:17701–17710CrossRefGoogle Scholar
  51. 51.
    Yue X, Wang SB, Zhu YC (2017) High-temperature long persistent and photo-stimulated luminescence in Tb3+ doped gallate phosphor. J Alloy Compd 701:774–779CrossRefGoogle Scholar
  52. 52.
    Wang T, Gou J, Xu XH (2015) Self-activated long persistent luminescence from different trapping centers of calcium germinate. Opt Express 23:12595–12604CrossRefGoogle Scholar
  53. 53.
    Xu XG, Chen J, Deng SZ, Xu NS, Lin J (2010) Cathodoluminescent properties of nanocrystalline Lu3Ga5O12: Tb3+ phosphor for field emission display application. J Vac Sci Technol, B 28:490–494CrossRefGoogle Scholar
  54. 54.
    Joy DC, Romig AD Jr, Goldstein J (1986) Principles of analytical electron microscopy. Springer Science & Business Media, BerlinCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Special Function Materials and Structure Design, Ministry of EducationLanzhou UniversityLanzhouChina
  2. 2.National and Local Joint Engineering Laboratory for Optical Conversion Materials and TechnologyLanzhou UniversityLanzhouChina
  3. 3.Key Laboratory of Magnetism and Magnetic Materials, Ministry of EducationLanzhou UniversityLanzhouChina

Personalised recommendations