Advertisement

Effects of piezoelectric-phase orientations on magnetoelectric coefficient in AlN–FeCoSiB multiferroic composites

  • Meirui Liu
  • Gang Jian
Electronic materials
  • 10 Downloads

Abstract

In this study, orientation dependences of ps11′, ps12′, pε33′ and d31′ for piezoelectric phase were investigated along arbitrary directions using relative experimental data and original matrices for AlN with point group of 6mm. Then, effects of various orientations of piezoelectric phase on magnetoelectric coefficient of AlN–FeCoSiB laminated multiferroic composites were studied. It was found that ps11′ is a constant while ps12′, pε33′ and d31′ exhibit high dependence on crystal orientations with their MAX values existing along [001]-axis. The magnetoelectric coefficient αE33′ increases with decreased angle θ apart from c-axis of AlN in range of 90°–0°; the MAX αE33′ = 5405 mV/cm Oe exists in AlN ∥ [001]—FeCoSiB. Along specific preferred orientations of piezoelectric phase, twofold–fivefold of enhancement of αE33 can be obtained compared to randomly arranged composites. Volume fraction is found to be independent of orientations of component phases, and the volume fraction for magnetic phase f around 0.75 obtains the largest αE33. The results suggest an approach of enhancing magnetoelectric coefficient of composite multiferroic materials through crystal-orientation controls of single crystals or textured ceramics.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Chu ZQ, Shi HD, Shi WL, Liu GX, Wu JG, Yang JK, Dong SX (2017) Enhanced resonance magnetoelectric coupling in (1-1) connectivity composites. Adv Mater 29(19):1606022CrossRefGoogle Scholar
  2. 2.
    Naveed-Ul-Haq M, Shvartsman W, Constantinescu G, Trivedi H, Salamon S, Landers J, Wende H, Lupascu DC (2017) Effect of Al3+ modification on cobalt ferrite and its impact on the magnetoeletric effect in BCZT-CFO multiferroic composites. J Mater Sci 52(23):13402–13413.  https://doi.org/10.1007/s10853-017-1444-4 CrossRefGoogle Scholar
  3. 3.
    Hrkac SB, Koops CT, Abes M, Krywka C, Muller M, Burghammer M, Sztucki M, Dane TG, Kaps S, Mishra YK, Adelung R, Schmalz J, Gerken M, Lage E, Kirchhof C, Quandt E, Magnussen OM, Murphy BM (2017) Tunable strain in magnetoelectric ZnO microrod composite interfaces. ACS Appl Mater Interface 9(30):25571–25577CrossRefGoogle Scholar
  4. 4.
    Kang MG, Sriramdas R, Lee H, Chun J, Maurya D, Hwang GT, Ryu J, Priya S (2018) High power magnetic field energy harvesting through amplified magneto-mechanical vibration. Adv Energy Mater 8(16):1703313CrossRefGoogle Scholar
  5. 5.
    Jian G, Zhou DX, Yang JY, Shao H, Xue F, Fu QY (2013) Microstructure and multiferroic properties of BaTiO3/CoFe2O4 films on Al2O3/Pt substrates fabricated by electrophoretic deposition. J Eur Ceram Soc 33(6):1155–1163CrossRefGoogle Scholar
  6. 6.
    Tan SY, Shannigrahi SR, Tan SH, Tay FEH (2008) Synthesis and characterization of composite MgFe2O4–BaTiO3 multiferroic system. J Appl Phys 103(9):094105CrossRefGoogle Scholar
  7. 7.
    Liu M, Li X, Imrane H, Chen Y, Goodrich T, Cai Z, Ziemer KS, Huang JY (2007) Synthesis of ordered arrays of multiferroic NiFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanowires. Appl Phys Lett 90(15):152501CrossRefGoogle Scholar
  8. 8.
    Dix N, Muralidharan R, Guyonnet J, Fonrose BW (2009) On the strain coupling across vertical interfaces of switchable BiFeO3–CoFe2O4 multiferroic nanostructures. Appl Phys Lett 95(6):062907CrossRefGoogle Scholar
  9. 9.
    Greve H, Woltermann E, Quenzer HJ, Wagner B, Quandt E (2010) Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl Phys Lett 96(18):182501CrossRefGoogle Scholar
  10. 10.
    Bennett SP, Baldwin JW, Staruch M, Matis BR, LaComb J, van’t Erve OMJ, Bussmann K, Metzler M, Gottron N, Zappone W, LoComb R, Finkel P (2017) Magnetic field response of doubly clamped magnetoelectric microelectromechanical AlN–FeCo resonators. Appl Phys Lett 111(25):252903CrossRefGoogle Scholar
  11. 11.
    Lehmann Fernandez CS, Pereira N, Lanceros-Mendez S, Martins P (2017) Evaluation and optimization of the magnetoelectric response of CoFe2O4/poly(vinylidene fluoride) composite spheres by computer simulation. Compos Sci Technol 146:119–130CrossRefGoogle Scholar
  12. 12.
    Martins P, Lanceros-Mendez S (2013) Polymer-based magnetoelectric materials. Adv Funct Mater 23(27):3371–3385CrossRefGoogle Scholar
  13. 13.
    Fermandes MM, Mora H, Barriga-Castro ED, Luna C, Mendoza-Resendez R, Ribeiro C, Lanceros-Mendez S, Martins P (2018) Improving magnetoelectric contactless sensing and actuation through anisotropic nanostructures. J Phys Chem C 122(33):19189–19196CrossRefGoogle Scholar
  14. 14.
    Ding LJ, Zhong Y (2018) A theoretical insight into an isentropic strategy for enhancing magnetoelectric coupling of organic multiferroics. Phys Chem Chem Phys 20(30):20228–20234CrossRefGoogle Scholar
  15. 15.
    Jones JL, Iverson BJ, Bowman KJ (2007) Texture and anisotropy of polycrystalline piezoelectrics. J Am Ceram Soc 90(8):2297–2314CrossRefGoogle Scholar
  16. 16.
    Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82(4):1804–1811CrossRefGoogle Scholar
  17. 17.
    Bhugra H, Piazza G (2017) Piezoelectric MEMS resonators. Springer, BerlinCrossRefGoogle Scholar
  18. 18.
    Newnham RE (2005) Properties of materials. Anisotropy, symmetry, structure. Oxford University Press, OxfordGoogle Scholar
  19. 19.
    Muchenjk TI, Barbero EJ (2016) Prediction of extrinsic charge, voltage, and work-conversion factors for laminated magnetoelectric composites. Smart Mater Struct 25(1):015006CrossRefGoogle Scholar
  20. 20.
    Nan CW, Bichurin MI, Dong SX, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103(3):031101CrossRefGoogle Scholar
  21. 21.
    Jian G, Wong CP (2017) Orientation dependence of magnetoelectric coefficient in BaTiO3/CoFe2O4. AIP Adv 7(7):075307CrossRefGoogle Scholar
  22. 22.
    Zhai J, Xing Z, Dong S, Li J, Viehland D (2008) Magnetoelectric laminate composites: an overview. J Am Ceram Soc 91(2):351–358CrossRefGoogle Scholar
  23. 23.
    Tong B, Yang X, Guo Z, Li K, Ouyang J, Lin G, Chen S (2013) Preparation and characterization of AlN/FeCoSiB magnetoelectric thin film composites. Ceram Int 39(6):6853–6859CrossRefGoogle Scholar
  24. 24.
    Zhang C, Wang X, Chen W, Yang J (2017) An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Mater Str 26(2):025030CrossRefGoogle Scholar
  25. 25.
    Chi PW, Wei DH, Yu CC, Yao YD (2017) Magnetic-control-electric and reversal behavior of ZnO/NiFe/ZnO multilayer films. AIP Adv 7:056309CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiangChina
  2. 2.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations