Advertisement

Journal of Materials Science

, Volume 54, Issue 8, pp 6719–6727 | Cite as

High-performance polyamide-imide films and electrospun aligned nanofibers from an amide-containing diamine

  • Gaigai Duan
  • Shuwu Liu
  • Shaohua JiangEmail author
  • Haoqing HouEmail author
Polymers
  • 33 Downloads

Abstract

Polyamide-imides (PAIs) are highly desired in many applications because of their superior thermal and mechanical properties. In this work, PAI was prepared from an amide-containing diamine and dianhydride by polycondensation and thermal treatment. Both PAI films and aligned electrospun nanofibers (ANFs) were fabricated. FT-IR was used to determine the structure formation of PAI at different annealing temperatures. DSC and TGA were used to evaluate the thermal properties of PAI, while tensile test was applied to evaluate the mechanical properties of PAI films and ANFs. The results indicated that the PAI possessed both outstanding thermal stability and mechanical properties, which provide opportunities for applications in gas separation, high temperature filtration, reinforcement, etc.

Notes

Acknowledgements

Natural Science Foundation of Jiangsu Province of China (BK20180770); National Natural Science Foundation of China (51803093, 21574060 and 21374044); Major Special Projects of Jiangxi Provincial Department of Science and Technology (20114ABF05100); Technology Plan Landing Project of Jiangxi Provincial Department of Education (GCJ2011-24).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict.

References

  1. 1.
    Terney S, Keating J, Zielinski J, Hakala J, Sheffer H (1970) Polyamide-imides. J Polym Sci Part A Polym Chem 8(3):683–692CrossRefGoogle Scholar
  2. 2.
    Abbasi H, Antunes M, Velasco JI (2015) Influence of polyamide-imide concentration on the cellular structure and thermo-mechanical properties of polyetherimide/polyamide-imide blend foams. Eur Polym J 69:273–283CrossRefGoogle Scholar
  3. 3.
    Wang Y, Jiang L, Matsuura T, Chung TS, Goh SH (2008) Investigation of the fundamental differences between polyamide-imide (PAI) and polyetherimide (PEI) membranes for isopropanol dehydration via pervaporation. J Membr Sci 318(1):217–226.  https://doi.org/10.1016/j.memsci.2008.02.033 CrossRefGoogle Scholar
  4. 4.
    Lim SK, Setiawan L, Bae T-H, Wang R (2016) Polyamide-imide hollow fiber membranes crosslinked with amine-appended inorganic networks for application in solvent-resistant nanofiltration under low operating pressure. J Membr Sci 501:152–160CrossRefGoogle Scholar
  5. 5.
    Feng Y, Xiong T, Xu H, Li C, Hou H (2016) Polyamide-imide reinforced polytetrafluoroethylene nanofiber membranes with enhanced mechanical properties and thermal stabilities. Mater Lett 182:59–62CrossRefGoogle Scholar
  6. 6.
    Shen C, Khonsari MM, Spadafora M, Ludlow C (2016) Tribological performance of polyamide-imide seal ring under seawater lubrication. Tribol Lett 62(3):39CrossRefGoogle Scholar
  7. 7.
    Ding Y, Hou H, Zhao Y, Zhu Z, Fong H (2016) Electrospun polyimide nanofibers and their applications. Prog Polym Sci 61:67–103.  https://doi.org/10.1016/j.progpolymsci.2016.06.006 CrossRefGoogle Scholar
  8. 8.
    Hou H, Xu W, Ding Y (2018) The recent progress on high-performance polymer nanofibers by electrospinning. J Jiangxi Normal Univ (Nat Sci) 42(6):551–564.  https://doi.org/10.1039/C6TA10474F Google Scholar
  9. 9.
    Jiang S, Han D, Huang C, Duan G, Hou H (2018) Temperature-induced molecular orientation and mechanical properties of single electrospun polyimide nanofiber. Mater Lett 216:81–83CrossRefGoogle Scholar
  10. 10.
    Chen D, Liu T, Zhou X, Tjiu WC, Hou H (2009) Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. J Phys Chem B 113(29):9741–9748.  https://doi.org/10.1021/jp9025128 CrossRefGoogle Scholar
  11. 11.
    Jian S, Liu S, Chen L, Zhou S, Fan P, Zeng Y, Hou H (2017) Nano-boria reinforced polyimide composites with greatly enhanced thermal and mechanical properties via in situ thermal conversion of boric acid. Compos Commun 3:14–17CrossRefGoogle Scholar
  12. 12.
    Jian S, Zhu J, Jiang S, Chen S, Fang H, Song Y, Duan G, Zhang Y, Hou H (2018) Nanofibers with diameter below one nanometer from electrospinning. RSC Adv 8(9):4794–4802.  https://doi.org/10.1039/C7RA13444D CrossRefGoogle Scholar
  13. 13.
    Xu W, Yang T, Yu Y, Zhang C, Ding Y, Hou H (2018) The synthesis and characterization of polyimides from a novel synthesized 3,3′-(m-phenylene) dianhydride monomer. J Jiangxi Normal Univ (Nat Sci) 42(1):82–88.  https://doi.org/10.1039/C6TA10474F Google Scholar
  14. 14.
    Miao Y-E, Zhu G-N, Hou H, Xia Y-Y, Liu T (2013) Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sour 226:82–86.  https://doi.org/10.1016/j.jpowsour.2012.10.027 CrossRefGoogle Scholar
  15. 15.
    Xu H, Jiang S, Ding C, Zhu Y, Li J, Hou H (2017) High strength and high breaking load of single electrospun polyimide microfiber from water soluble precursor. Mater Lett 201:82–84CrossRefGoogle Scholar
  16. 16.
    Jian S, Ding C, Yang T, Zhang C, Hou H (2018) Effect of trace diphenyl phosphate on mechanical and thermal performance of polyimide composite films. Compos Commun 7:42–46CrossRefGoogle Scholar
  17. 17.
    Xu W, Yu Y, Yang T, Zhang C, Hou H (2018) The synthesis and properties of new 3D-printable polyimide. J Jiangxi Normal Univ (Nat Sci) 42(4):405–410.  https://doi.org/10.1039/C6TA10474F Google Scholar
  18. 18.
    Hu Z, Li S, Zhang C (2007) Synthesis and properties of polyamide-imides containing fluorenyl cardo structure. J Appl Polym Sci 106(4):2494–2501CrossRefGoogle Scholar
  19. 19.
    Liaw D-J, Liaw B-Y (2001) Synthesis and characterization of new polyamide-imides containing pendent adamantyl groups. Polymer 42(2):839–845.  https://doi.org/10.1016/S0032-3861(00)00379-7 CrossRefGoogle Scholar
  20. 20.
    Liaw D-J, Hsu P-N, Liaw B-Y (2001) Synthesis and characterization of novel polyamide-imides containing noncoplanar 2,2′-dimethyl-4,4′-biphenylene unit. J Polym Sci Part A Polym Chem 39(1):63–70.  https://doi.org/10.1002/1099-0518(20010101)39:1%3c63:AID-POLA70%3e3.0.CO;2-X CrossRefGoogle Scholar
  21. 21.
    Liaw D-J, Hsu P-N, Chen W-H, Lin S-L (2002) High glass transitions of new polyamides, polyimides, and poly(amide–imide)s containing a triphenylamine group: synthesis and characterization. Macromolecules 35(12):4669–4676.  https://doi.org/10.1021/ma001523u CrossRefGoogle Scholar
  22. 22.
    Park S-J, Yop Rhee K, Jin F-L (2015) Improvement of hydrophilic properties of electrospun polyamide-imide fibrous mats by atmospheric-pressure plasma treatment. J Phys Chem Solids 78:53–58.  https://doi.org/10.1016/j.jpcs.2014.11.001 CrossRefGoogle Scholar
  23. 23.
    Jang WG, Jeon KS, Byun HS (2013) The preparation of porous polyamide-imide nanofiber membrane by using electrospinning for MF application. Desalin Water Treat 51(25–27):5283–5288.  https://doi.org/10.1080/19443994.2013.768755 CrossRefGoogle Scholar
  24. 24.
    G-y Heo, Y-t Hong, S-j Park (2012) Preparation and characterization of nickel-coated carbon nanofibers produced from the electropsinning of polyamideimide precursor. Macromol Res 20(5):503–507.  https://doi.org/10.1007/s13233-012-0075-5 CrossRefGoogle Scholar
  25. 25.
    Wang M, Jin H-J, Kaplan DL, Rutledge GC (2004) Mechanical properties of electrospun silk fibers. Macromolecules 37(18):6856–6864CrossRefGoogle Scholar
  26. 26.
    Jiang S, Chen Y, Duan G, Mei C, Greiner A, Agarwal S (2018) Electrospun nanofiber reinforced composites: a review. Polym Chem 9:2685–2720.  https://doi.org/10.1039/C8PY00378E CrossRefGoogle Scholar
  27. 27.
    Pai C-L, Boyce MC, Rutledge GC (2011) Mechanical properties of individual electrospun PA 6 (3) T fibers and their variation with fiber diameter. Polymer 52(10):2295–2301CrossRefGoogle Scholar
  28. 28.
    Koosha M, Mirzadeh H (2015) Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. J Biomed Mater Res A 103(9):3081–3093CrossRefGoogle Scholar
  29. 29.
    Tan E, Lim C (2006) Mechanical characterization of nanofibers—a review. Compos Sci Technol 66(9):1102–1111CrossRefGoogle Scholar
  30. 30.
    Arinstein A, Zussman E (2011) Electrospun polymer nanofibers: mechanical and thermodynamic perspectives. J Polym Sci Part B Polym Phys 49(10):691–707CrossRefGoogle Scholar
  31. 31.
    Jiang S, Duan G, Chen L, Hu X, Hou H (2015) Mechanical performance of aligned electrospun polyimide nanofiber belt at high temperature. Mater Lett 140:12–15.  https://doi.org/10.1016/j.matlet.2014.11.003 CrossRefGoogle Scholar
  32. 32.
    Chen L, Jiang S, Chen J, Chen F, He Y, Zhu Y, Hou H (2015) Single electrospun nanofiber and aligned nanofiber belts from copolyimide containing pyrimidine units. New J Chem 39(11):8956–8963.  https://doi.org/10.1039/C5NJ01941A CrossRefGoogle Scholar
  33. 33.
    Chen S, Hu P, Greiner A, Cheng C, Cheng H, Chen F, Hou H (2008) Electrospun nanofiber belts made from high performance copolyimide. Nanotechnology 19(1):015604.  https://doi.org/10.1088/0957-4484/19/01/015604 CrossRefGoogle Scholar
  34. 34.
    He Y, Han D, Chen J, Ding Y, Jiang S, Hu C, Chen S, Hou H (2014) Highly strong and highly tough electrospun polyimide/polyimide composite nanofibers from binary blend of polyamic acids. RSC Adv 4(104):59936–59942CrossRefGoogle Scholar
  35. 35.
    Scheiner S, Kar T (2002) Red- versus blue-shifting hydrogen bonds: are there fundamental distinctions? J Phys Chem A 106(9):1784–1789.  https://doi.org/10.1021/jp013702z CrossRefGoogle Scholar
  36. 36.
    Chocholoušová J, Špirko V, Hobza P (2004) First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–H···O and improper blue-shifted C–H···O hydrogen bonds. PCCP 6(1):37–41.  https://doi.org/10.1039/B314148A CrossRefGoogle Scholar
  37. 37.
    Joseph J, Jemmis ED (2007) Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J Am Chem Soc 129(15):4620–4632.  https://doi.org/10.1021/ja067545z CrossRefGoogle Scholar
  38. 38.
    Snyder R, Thomson B, Bartges B, Czerniawski D, Painter P (1989) FTIR studies of polyimides: thermal curing. Macromolecules 22(11):4166–4172CrossRefGoogle Scholar
  39. 39.
    Yang H, Jiang S, Fang H, Hu X, Duan G, Hou H (2018) Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 200:339–344.  https://doi.org/10.1016/j.saa.2018.04.045 CrossRefGoogle Scholar
  40. 40.
    Zhang H, Jiang S, Duan G, Li J, Liu K, Zhou C, Hou H (2014) Heat-resistant polybenzoxazole nanofibers made by electrospinning. Eur Polym J 50:61–68CrossRefGoogle Scholar
  41. 41.
    Huang CB, Chen SL, Reneker DH, Lai CL, Hou HQ (2006) High-strength mats from electrospun poly(p-phenylene biphenyltetracarboximide) nanofibers. Adv Mater 18(5):668.  https://doi.org/10.1002/adma.200501806 CrossRefGoogle Scholar
  42. 42.
    Jiang S, Duan G, Chen L, Hu X, Hou H (2015) Mechanical performance of aligned electrospun polyimide nanofiber belt at high temperature. Mater Lett 140:12–15CrossRefGoogle Scholar
  43. 43.
    Bazbouz MB, Stylios GK (2010) The tensile properties of electrospun nylon 6 single nanofibers. J Polym Sci Pt B-Polym Phys 48(15):1719–1731.  https://doi.org/10.1002/polb.21993 CrossRefGoogle Scholar
  44. 44.
    Hwang KY, Kim S-D, Kim Y-W, Yu W-R (2010) Mechanical characterization of nanofibers using a nanomanipulator and atomic force microscope cantilever in a scanning electron microscope. Polym Test 29(3):375–380.  https://doi.org/10.1016/j.polymertesting.2010.01.002 CrossRefGoogle Scholar
  45. 45.
    Jiang SH, Hou HQ, Greiner A, Agarwal S (2012) Tough and transparent nylon-6 electrospun nanofiber reinforced melamine-formaldehyde composites. ACS Appl Mater Interfaces 4(5):2597–2603.  https://doi.org/10.1021/am300286m CrossRefGoogle Scholar
  46. 46.
    Chen D, Liu TX, Zhou XP, Tjiu WC, Hou HQ (2009) Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. J Phys Chem B 113(29):9741–9748.  https://doi.org/10.1021/jp9025128 CrossRefGoogle Scholar
  47. 47.
    Peng L, Jiang SH, Seuss M, Fery A, Lang G, Scheibel T, Agarwal S (2016) Two-in-one composite fibers with side-by-side arrangement of silk fibroin and poly(l-lactide) by electrospinning. Macromol Mater Eng 301(1):48–55.  https://doi.org/10.1002/mame.201500217 CrossRefGoogle Scholar
  48. 48.
    Feng Y, Xiong T, Jiang S, Liu S, Hou H (2016) Mechanical properties and chemical resistance of electrospun polyterafluoroethylene fibres. RSC Adv 6(29):24250–24256.  https://doi.org/10.1039/C5RA27676D CrossRefGoogle Scholar
  49. 49.
    Liverani L, Boccaccini AR (2016) Versatile production of poly(epsilon-caprolactone) fibers by electrospinning using benign solvents. Nanomaterials (Basel, Switzerland) 6(4):75.  https://doi.org/10.3390/nano6040075 Google Scholar
  50. 50.
    Tan EPS, Ng SY, Lim CT (2005) Tensile testing of a single ultrafine polymeric fiber. Biomaterials 26(13):1453–1456.  https://doi.org/10.1016/j.biomaterials.2004.05.021 CrossRefGoogle Scholar
  51. 51.
    Jiang SH, Duan GG, Zussman E, Greiner A, Agarwal S (2014) Highly flexible and tough concentric triaxial polystyrene fibers. ACS Appl Mater Interfaces 6(8):5918–5923.  https://doi.org/10.1021/am500837s CrossRefGoogle Scholar
  52. 52.
    Inai R, Kotaki M, Ramakrishna S (2005) Structure and properties of electrospun PLLA single nanofibres. Nanotechnology 16(2):208–213.  https://doi.org/10.1088/0957-4484/16/2/005 CrossRefGoogle Scholar
  53. 53.
    Zhang HA, Jiang SH, Duan GG, Li JH, Liu KM, Zhou CY, Hou HQ (2014) Heat-resistant polybenzoxazole nanofibers made by electrospinning. Eur Polym J 50:61–68.  https://doi.org/10.1016/j.eurpolymj.2013.10.029 CrossRefGoogle Scholar
  54. 54.
    Chen K, Zhang S, Liu B, Mao X, Sun G, Yu J, Aldeyab S, Ding B (2014) Large-scale fabrication of highly aligned poly(m-phenylene isophthalamide) nanofibers with robust mechanical strength. Rsc Adv 4(86):45760–45767CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringNanjing Forestry UniversityNanjingChina
  2. 2.College of Chemistry and Chemical EngineeringJiangxi Normal UniversityNanchangChina

Personalised recommendations