Journal of Materials Science

, Volume 54, Issue 11, pp 8276–8288 | Cite as

Nanoscale integration of oxides and metals in bulk 3D composites: leveraging SrFe12O19/Co interfaces for magnetic exchange coupling

  • A. D. Volodchenkov
  • Y. KoderaEmail author
  • J. E. GarayEmail author


The integration of different material classes (e.g, oxides and metals) with nanoscale dimensions in large 3D materials remains a fundamental challenge in nanocomposite fabrication. The incentive is that some of the most interesting properties occur at nanoscale interfaces, while the challenge arises from the difficulty in densifying the materials without deleterious reaction at the interface. Here, we introduce a method based on the synthesis of core–shell powders followed by efficient, relatively low-temperature densification with current-activated pressure-assisted densification. The composition of the bulk nanocomposites can be controlled by varying the core–shell weight ratio, leading to controllable thicknesses of the hard/soft magnetic phases. We demonstrate intimate mixtures of nanoscale strontium ferrite (hard magnetic phase) and Co–Fe (soft magnetic phase) with minimal reaction. The high volume content of high-quality oxide/metal interfaces leads to magnetic exchange coupling in the composites.



The support of this work from the Office of Naval Research with Dr H. S. Coombe as program manager is most gratefully acknowledged.


  1. 1.
    Hellman F et al (2017) Interface-induced phenomena in magnetism. Rev Mod Phys 89:025006CrossRefGoogle Scholar
  2. 2.
    Miyazaki T, Tezuka N (1995) Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J Magn Magn Mater 139:L231–L234CrossRefGoogle Scholar
  3. 3.
    Tang C, Sellappan P, Liu Y, Xu Y, Garay JE, Shi J (2016) Anomalous hall hysteresis in Tm3Fe5O12/Pt with strain-induced perpendicular magnetic anisotropy. Phys Rev B Rapid Commun 94:140403(R)CrossRefGoogle Scholar
  4. 4.
    Leite GCP, Chagas EF, Pereira R, Prado RJ, Terezo AJ, Alzamora M, Baggio-Saitovitch E (2012) Exchange coupling behavior in bimagnetic CoFe2O4/CoFe2 nanocomposite. J Magn Magn Mater 324:2711–2716CrossRefGoogle Scholar
  5. 5.
    Zeng H, Li J, Liu JP, Wang ZL, Sun S (2002) Exchange-coupled nanocomposite magnets by nanoparticle by self-assembly. Nature 420:395–398CrossRefGoogle Scholar
  6. 6.
    Volodchenkov AD, Kodera Y, Garay JE (2016) Synthesis of strontium ferrite/iron oxide exchange coupled nano-powders with improved energy product for rare earth free permanent magnet applications. J Mater Chem C 4:5593–5601CrossRefGoogle Scholar
  7. 7.
    Zhang Y, Yan B, Ou-Yang J, Zhu B, Chen S, Yang X, Liu Y, Xiong R (2015) Magnetic properties of core/shell-structured CoFe2/CoFe2O4 composite nano-powders synthesized via oxidation reaction. Ceram Int 41:11836–11843CrossRefGoogle Scholar
  8. 8.
    Fullerton Eric E, Jiang JS, Grimsditch M, Sowers CH, Bader SD (1998) Exchange-spring behavior in epitaxial hard/soft magnetic bilayers. Phys Rev B 58:12193CrossRefGoogle Scholar
  9. 9.
    Garay JE (2010) Current activated pressure assisted densification of materials. Annu Rev Mater Res 40:445–468CrossRefGoogle Scholar
  10. 10.
    Morales JR, Tanju S, Beyermann WP, Garay JE (2010) Exchange bias in large three dimensional iron oxide nanocomposites. Appl Phys Lett 96:013102CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Xiong R, Yang Z, Yu W, Zhu B, Chen S, Yang X (2013) Enhancement of interparticle exchange coupling in cofe2o4/cofe2 composite nanoceramics via spark plasma sintering technology. J Am Ceram Soc 96(12):3798–3804CrossRefGoogle Scholar
  12. 12.
    Nawathey-Dikshit R, Shinde SR, Ogale SB, Kulkarni SD, Sainkar SR, Date SK (1996) Synthesis of single domain strontium ferrite powder by pulsed laser ablation. Appl Phys Lett 68(24):3491CrossRefGoogle Scholar
  13. 13.
    Liu Z, Davies H (2009) J Phys D: Appl Phys, vol. 42Google Scholar
  14. 14.
    Shinde S R, Lofland S E, Ganpule C S, Ogale S B, Bhagat S M, Venkatesan T, and Ramesh R J (1999) Appl Phys 85(10): 7459Google Scholar
  15. 15.
    Pullar RC (2012) Prog Mater Sci 57(7):1191–1334CrossRefGoogle Scholar
  16. 16.
    Willard HH, Tang NK (1937) A study of the precipitation of aluminum basic sulfate by urea. J Am Chem Soc 1937(59):1190–1196CrossRefGoogle Scholar
  17. 17.
    Djuričić B, Pickering S, McGarry D, Glaude P, Tambuyser P, Schuster K (1995) The properties of zirconia powders produced by homogeneous precipitation. Ceram Int 21(3):195–206CrossRefGoogle Scholar
  18. 18.
    Unuma H, Kato S, Ota T, Takahashi M (1998) Homogeneous precipitation of alumina precursors via enzymatic decomposition of urea. Adv Powder Technol 9(2):181–190CrossRefGoogle Scholar
  19. 19.
    Matijevic E (1993) Preparation and properties of uniform size colloids. Chem Mater 5(4):412–426CrossRefGoogle Scholar
  20. 20.
    Parida K, Das J (1996) Studies on ferric oxide hydroxides: II. Structural properties of goethite samples (α-FeOOH) prepared by homogeneous precipitation from Fe(NO3)3solution in the presence of sulfate ions. J Colloid Interface Sci 178(2):586–593CrossRefGoogle Scholar
  21. 21.
    Anselmi-Tamburini U, Garay JE, Munir ZA (2006) Fast low-temperature consolidation of nanometric ceramic materials. Scr Mater 54:823–828CrossRefGoogle Scholar
  22. 22.
    Pike CR (2003) First-order reversal-curve diagrams and reversible magnetization. Phys Rev B 68(10):104424CrossRefGoogle Scholar
  23. 23.
    Harrison R J and Feinberg J M (2008) “FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing,” Geochemistry, Geophys. Geosystems 9(5)Google Scholar
  24. 24.
    Jiang Y, Wu Y, Xie B, Xie Y, Qian Y (2002) Moderate temperature synthesis of nanocrystalline Co 3 O 4 via gel hydrothermal oxidation. Mater Chem Phys 74:234–237CrossRefGoogle Scholar
  25. 25.
    Yang H, Hu Y, Zhang X, Qiu G (2004) Mechanochemical synthesis of cobalt oxide nanoparticles. Mater Lett 58(3–4):387–389CrossRefGoogle Scholar
  26. 26.
    Fullerton EE, Jiang J, Bader S (1999) Hard/soft magnetic heterostructures: model exchange-spring magnets. J Magn Magn Mater 200(1–3):392–404CrossRefGoogle Scholar
  27. 27.
    Nishizawa T, Ishida K (1984) The Co–Fe (cobalt–iron) system. Bull Alloy Phase Diagr 5(3):250–259CrossRefGoogle Scholar
  28. 28.
    Pike CR, Roberts AP, Verosub KL (1999) Characterizing interactions in fine magnetic particle systems using first order reversal curves. J Appl Phys 85(9):6660CrossRefGoogle Scholar
  29. 29.
    Roy D, Anil Kumar PS (2015) Exchange spring behaviour in SrFe12O19–CoFe2O4 nanocomposites. AIP Adv 5(7):077137CrossRefGoogle Scholar
  30. 30.
    Mayergoyz ID (2003) Mathematical models of hysteresis and their applications. Second Elsevier, New YorkGoogle Scholar
  31. 31.
    Volodchenkov AD, Ramirez S, Samnakay R, Salgado R, Kodera Y, Balandin AA, Garay JE (2017) Magnetic and thermal transport properties of SrFe12O19 permanent magnets with anisotropic grain structure. Mater Des 125(5):62–68CrossRefGoogle Scholar
  32. 32.
    Chan KT, Morales JR, Kodera Y, Garay JE (2017) A processing route for bulk, high coercivity, rare-earth free, nanocomposite magnets based on metastable iron oxide. J Mater Chem C 5:7911CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Materials Processing and Synthesis (AMPS) Laboratory, University of CaliforniaSan DiegoUSA
  2. 2.Materials Science and Engineering Program, Mechanical and Aerospace Engineering DepartmentUniversity of CaliforniaSan DiegoUSA

Personalised recommendations