Journal of Materials Science

, Volume 54, Issue 6, pp 4523–4531 | Cite as

Influence of compositional ratio K/Na on structure and piezoelectric properties in [(Na1−xKx)0.5Bi0.5]Ti0.985Ta0.015O3 ceramics

  • Qiang LiEmail author
  • Chao Wang
  • Weiming Zhang
  • Huiqing Fan


[(Na1−xKx)0.5Bi0.5]Ti0.985Ta0.015O3 (abbreviated as Ta-NK100x) lead-free ceramics with good piezoelectric properties were prepared using a solid-state reaction method. The structure and electrical properties of Ta-NK100x had been systemically investigated. The highest bipolar strain of 0.458% and the unipolar strain 0.448% are achieved at x = 0.18 at 60 kV/cm. Meanwhile, the corresponding normalized strain \( \left( {d_{33}^{*} } \right) \) reaches 747 pm/V. In addition, the unipolar strain of the poled Ta-NK18 increases to 0.537%, and corresponding \( d_{33}^{*} \) increases slightly to 894.5 pm/V at 60 kV/cm. The electric-field-induced phase transition between ferroelectric and relaxor is found to play a dominant role in the origin of the large strain. Moreover, the strain behavior remains stable within 105 switching cycles which indicating the prepared ceramics are promising candidates for actuators and stress sensors.



This work is supported by the National Nature Science Foundation (51672220), the SPDRF (20116102130002), the 111 Program (B08040) of MOE, the National Defense Science Foundation (32102060303), the Xi’an Science and Technology Foundation (2017086CGRC049-XBGY005, CXY1706-5), the SKLP Foundation (KP201421, KP201523), the Shaanxi Provincial Science Foundation (2017KW-018), and the NPU Gaofeng Project (17GH020824) of China. We would like to thank the Analytical and Testing Center of Northwestern Polytechnical University.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.


  1. 1.
    Dong G, Fan H, Shi J, Li M (2015) Composition- and temperature-dependent large strain in (1 − x)(0.8Bi0.5Na0.5TiO3–0.2Bi0.5K0.5TiO3)–xNaNbO3 ceramics. J Am Ceram Soc 98:1150–1155CrossRefGoogle Scholar
  2. 2.
    Gao S, Yao Z, Ning L, Dong G, Fan H, Li Q (2017) Enhanced bipolar strain response in lithium/niobium Co-doped sodium–barium bismuth titanate lead-free ceramics. Adv Eng Mater 19:1700125CrossRefGoogle Scholar
  3. 3.
    Liu G, Fan H, Shi J, Liu Z (2016) Large strain and relaxation behavior in CeO2 doped Bi0.487Na0.427K0.06Ba0.026TiO3 piezoceramics. Ceram Int 42:3938–3946CrossRefGoogle Scholar
  4. 4.
    Liu L, Shi D, Knapp M, Ehrenberg H, Fang L, Chen J (2014) Large strain response based on relaxor-antiferroelectric coherence in Bi0.5Na0.5TiO3–SrTiO3–(K0.5Na0.5)NbO3 solid solutions. J Appl Phys 116:84104CrossRefGoogle Scholar
  5. 5.
    Liu L, Knapp M, Ehrenberg H, Fang L, Fan H, Schmitt LA, Fuess H, Hoelzel M, Dammak H (2017) Average vs. local structure and composition-property phase diagram of K0.5Na0.5NbO3–Bi½Na½TiO3 system. J Eur Ceram 37:1387–1399CrossRefGoogle Scholar
  6. 6.
    Han F, Deng J, Liu X, Yan T, Ren S, Ma X, Liu S, Peng B, Liu L (2017) High-temperature dielectric and relaxation behavior of Yb-doped Bi0.5Na0.5TiO3 ceramics. Ceram Int 43:5564–5573CrossRefGoogle Scholar
  7. 7.
    Liu L, Fan H, Ke S, Chen X (2008) Effect of sintering temperature on the structure and properties of cerium-doped 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 piezoelectric ceramics. J Alloys Compd 458:504–508CrossRefGoogle Scholar
  8. 8.
    Liu L, Fan H, Fang L, Chen X, Dammak H, Thi MP (2009) Effects of Na/K evaporation on electrical properties and intrinsic defects in Na0.5K0.5NbO3 ceramics. Mater Chem Phys 117:138–141CrossRefGoogle Scholar
  9. 9.
    Shi J, Fan H, Liu X, Li Q (2014) Giant strain response and structure evolution in (Bi0.5Na0.5)0.945−x(Bi0.2Sr0.7–0.1)xBa0.055TiO3 ceramics. J Eur Ceram Soc 34:3675–3683CrossRefGoogle Scholar
  10. 10.
    Liu X, Fan H, Shi J, Li Q (2015) Origin of anomalous giant dielectric performance in novel perovskite: Bi0.5−xLaxNa0.5−xLixTi1−yMyO3 (M = Mg2+, Ga3+). Sci Rep 5:12699CrossRefGoogle Scholar
  11. 11.
    Zhao N, Fan H, Ren X, Gao S, Ma J, Shi Y (2018) A novel ((Bi0.5Na0.5)0.94Ba0.06)1−x(K0.5Nd0.5)xTiO3 lead-free relaxor ferroelectric ceramic with large electrostrains at wide temperature ranges. Ceram Int 44:571–579CrossRefGoogle Scholar
  12. 12.
    Rödel J, Jo W, Seifert KTP, Anton E, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177CrossRefGoogle Scholar
  13. 13.
    Liu X, Tan X (2016) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28:574–578CrossRefGoogle Scholar
  14. 14.
    Liu X, Tan X (2016) Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics. J Appl Phys 120:34102CrossRefGoogle Scholar
  15. 15.
    West DL, Payne DA (2003) Microstructure development in reactive-templated grain growth of Bi1/2Na1/2TiO3-based ceramics: template and formulation effects. J Am Ceram Soc 86:769–774CrossRefGoogle Scholar
  16. 16.
    Watanabe H, Kimura T, Yamaguchi T (1991) Sintering of platelike bismuth titanate powder compacts with preferred orientation. J Am Ceram Soc 74:139–147CrossRefGoogle Scholar
  17. 17.
    Maurya D, Murayama M, Pramanick A Jr, Reynolds WT, An K, Priya S (2013) Origin of high piezoelectric response in A-site disordered morphotropic phase boundary composition of lead-free piezoelectric 0.93(Na0.5Bi0.5)TiO3–0.07BaTiO3. J Appl Phys 113:114101CrossRefGoogle Scholar
  18. 18.
    Atsushi SATC (1999) Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn J Appl Phys 38:5564CrossRefGoogle Scholar
  19. 19.
    Zhao Y, Xu Z, Li H, Hao J, Du J, Chu R, Wei D, Li G (2017) Improved piezoelectricity in (K0.44Na0.52Li0.04)(Nb0.91Ta0.05Sb0.04)O3−xBi0.25Na0.25NbO3 lead-free piezoelectric ceramics. J Electron Mater 46:116–122CrossRefGoogle Scholar
  20. 20.
    Shi J, Fan H, Liu X, Bell AJ (2014) Large electrostrictive strain in (Bi0.5Na0.5)TiO3–BaTiO3–(Sr0.7Bi0.2)TiO3 solid solutions. J Am Ceram Soc 97:848–853CrossRefGoogle Scholar
  21. 21.
    Du H, Zhou W, Zhu D, Fa L, Qu S, Li Y, Pei Z (2008) Sintering characteristic, microstructure, and dielectric relaxor behavior of (K0.5Na0.5)NbO3–(Bi0.5Na0.5)TiO3 lead-free ceramics. J Am Ceram Soc 91:2903–2909CrossRefGoogle Scholar
  22. 22.
    Qu B, Du H, Yang Z, Liu Q (2017) Large recoverable energy storage density and low sintering temperature in potassium-sodium niobate-based ceramics for multilayer pulsed power capacitors. J Am Ceram Soc 100:1517–1526CrossRefGoogle Scholar
  23. 23.
    Zhang Q, Zhang B, Li H, Shang P (2010) Effects of Na/K ratio on the phase structure and electrical properties of NaxK1−xNbO3 lead-free piezoelectric ceramics. Rare Met 29:220–225CrossRefGoogle Scholar
  24. 24.
    Kaam J (2000) An X-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1−xKx)0.5 Bi0.5TiO3 solid solution. J Phys Condens Matter 12:3267CrossRefGoogle Scholar
  25. 25.
    Hao J, Xu Z, Chu R, Li W, Fu P, Du J, Li G (2016) Structure evolution and electrostrictive properties in (Bi0.5Na0.5)0.94Ba0.06TiO3–M2O5 (M = Nb, Ta, Sb) lead-free piezoceramics. J Eer Ceram Soc 36:4003–4014CrossRefGoogle Scholar
  26. 26.
    Ghosh SK, Saha S, Sinha TP, Rout SK (2016) Large electrostrictive effect in (Ba1−xGd2x/3)Zr0.3Ti0.7O3 relaxor towards moderate field actuator and energy storage applications. J Appl Phys 120:204101CrossRefGoogle Scholar
  27. 27.
    Dittmer R, Gobeljic D, Jo W, Shvartsman VV, Lupascu DC, Jones JL, Rödel J (2014) Ergodicity reflected in macroscopic and microscopic field-dependent behavior of BNT-based relaxors. J Appl Phys 115:84111CrossRefGoogle Scholar
  28. 28.
    Zhang QM, Wang H, Kim N, Cross LE (1994) Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J Appl Phys 75:454–459CrossRefGoogle Scholar
  29. 29.
    Chaplya PM, Mitrovic M, Carman GP, Straub FK (2006) Durability properties of piezoelectric stack actuators under combined electromechanical loading. J Appl Phys 100:124111CrossRefGoogle Scholar
  30. 30.
    Wang C, Xia T, Lou X, Tian S (2017) Giant strain response in 2 mol% Nb-doped (Bi0.5Na0.4K0.1)TiO3 lead-free ceramics. J Mater Sci 52:11337–11345. Google Scholar
  31. 31.
    Hussain A, Maqbool A, Malik RA, Lee J, Sung Y, Song T, Kim M (2017) Phase structure and electromechanical behavior of Li, Nb co-doped 0.95Bi0.5Na0.5TiO3–0.05BaZrO3 ceramics. Ceram Int 43:S204–S208CrossRefGoogle Scholar
  32. 32.
    Hao J, Xu Z, Chu R, Chu S, Li W, Fu P, Du J, Hu C (2017) Bright upconversion emission and large strain in Er/Sb-codoped (Bi0.5Na0.5)0.945Ba0.065TiO3 ceramics. Mater Lett 193:138–141CrossRefGoogle Scholar
  33. 33.
    Cheng R, Zhu L, Zhu Y, Xu Z, Chu R, Li H, Hao J, Du J, Li G (2016) Giant piezoelectricity and ultrahigh strain response in bismuth sodium titanate lead-free ceramics. Mater Lett 165:143–146CrossRefGoogle Scholar
  34. 34.
    Ullah A, Malik RA, Ullah A, Lee DS, Jeong SJ, Lee JS, Kim IW, Ahn CW (2014) Electric-field-induced phase transition and large strain in lead-free Nb-doped BNKT–BST ceramics. J Eur Ceram Soc 34:29–35CrossRefGoogle Scholar
  35. 35.
    Hao J, Xu Z, Chu R, Li W, Du J, Fu P, Li G (2016) Electric field cycling induced large electrostrain in aged (K0.5Na0.5)NbO3–Cu lead-free piezoelectric ceramics. J Am Ceram Soc 99:402–405CrossRefGoogle Scholar
  36. 36.
    Nguyen V, Han H, Kim K, Dang D, Ahn K, Lee J (2012) Strain enhancement in Bi1/2(Na0.82K0.18)1/2TiO3 lead-free electromechanical ceramics by co-doping with Li and Ta. J Alloys Compd 511:237–241CrossRefGoogle Scholar
  37. 37.
    Dinh TH, Kang J, Lee J, Khansur NH, Daniels J, Lee H, Yao F, Wang K, Li J, Han H, Jo W (2016) Nanoscale ferroelectric/relaxor composites: origin of large strain in lead-free Bi-based incipient piezoelectric ceramics. J Eur Ceram Soc 36:3401–3407CrossRefGoogle Scholar
  38. 38.
    Cheng R, Xu Z, Chu R, Hao J, Du J, Li G (2016) Electric field-induced ultrahigh strain and large piezoelectric effect in Bi1/2Na1/2TiO3-based lead-free piezoceramics. J Eur Ceram Soc 36:489–496CrossRefGoogle Scholar
  39. 39.
    Jiang C, Zhou X, Zhou K, Chen C, Luo H, Yuan X, Zhang D (2016) Grain oriented Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant strain response derived from single-crystalline Na0.5Bi0.5TiO3–BaTiO3 templates. J Eur Ceram Soc 36:1377–1383CrossRefGoogle Scholar
  40. 40.
    Chen C, Zhao X, Wang Y, Zhang H, Deng H, Li X, Jiang X, Jiang X, Luo H (2016) Giant strain and electric-field-induced phase transition in lead-free (Na0.5Bi0.5)TiO3–BaTiO3–(K0.5Na0.5)NbO3 single crystal. Appl Phys Lett 108:22903CrossRefGoogle Scholar
  41. 41.
    Yang J, Yang Q, Li Y, Liu Y (2016) Growth mechanism and enhanced electrical properties of K0.5Na0.5NbO3-based lead-free piezoelectric single crystals grown by a solid-state crystal growth method. J Eur Ceram Soc 36:541–550CrossRefGoogle Scholar
  42. 42.
    Fu J, Zuo R (2013) Giant electrostrains accompanying the evolution of a relaxor behavior in Bi(Mg, Ti)O3-PbZrO3–PbTiO3 ferroelectric ceramics. Acta Mater 61:3687–3694CrossRefGoogle Scholar
  43. 43.
    Guo H, Liu X, Rödel J, Tan X (2015) Nanofragmentation of ferroelectric domains during polarization fatigue. Adv Funct Mater 25:270–277CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification Processing, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations