Biomacromolecules in bivalve shells with crossed lamellar architecture

  • Oluwatoosin B. A. Agbaje
  • Denise E. Thomas
  • J. Gabriel Dominguez
  • Bernie V. Mclnerney
  • Matthew A. Kosnik
  • Dorrit E. Jacob
Materials for life sciences


We present an in-depth characterisation of shells from two bivalve species with crossed lamellar microstructure, namely Tridacna gigas and Fulvia tenuicostata. High-resolution scanning electron microscopy and confocal microscopy imaging reveal a fine structure of nanogranular particles that are inorganic–bioorganic nanocomposites for both shells. In F. tenuicostata, inorganic–organic components are arranged in a polycrystalline fibre-like fabric. T. gigas consists of up to four hierarchical lamellar structural orders and the second-order lamellae consist of elongated nanometre-sized laths. The inorganic matrix is intimately intergrown with the total amount of organic matter (1.8 and 1.5 wt%), and the composition of the shell macromolecules is variable between the two calcareous biominerals. This work shows for the first time the presence of polysaccharide-based compounds that could be essential for the construction of bio-organics as well as many prominent protein bands, glycoproteins and/or glycosaminoglycans of unknown sizes far above 260 kDa in bivalve shells with crossed lamellar microstructure. Chitosan (deacetylated chitin) with apparent molecular weights from 18 to 110 kDa for T. gigas and from 12 kDa till above 110 kDa for F. tenuicostata are detected in gel electrophoresis after Calcofluor staining. In each of the shell extracts, the infrared spectroscopy shows polysaccharides, proteins and lipids. Our findings from two crossed lamellar shells representing two genera of Mollusca: Cardiidae indicate that chitin–protein complexes and lipid–lipoproteins are not restricted only to bivalves with nacroprismatic shells.



Fei Chi is well-appreciated for handling sugar analysis. OBAA acknowledges Dr. Nadia Suarez-Bosche for teaching him the basic technique of confocal microscopy imaging. DJ is financially supported by an ARC via a Future Fellowship and Discovery Grant (FT120100462). The work was facilitated in part by the Australian Government’s National Collaborative Research Strategy (NCRIS) and its facilities at the Australian Proteome Analysis Facility (APAF).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10853_2018_3165_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1: The online version contains supplementary information of the differences between charged to hydrophobic ratio (C/HP) and total wt% of the saccharidic composition of the soluble organic matrix (SOM) and trichloroacetic acid-phosphate buffer soluble moiety (TPM); total amino acid compositions and proportions from combining the soluble (SOM) plus the Trichloroacetic acid-Phosphate buffer soluble moieties (TPM); total monosaccharide compositions and proportions taken together from the water-soluble (SOM) plus the trichloroacetic acid–phosphate buffer soluble moieties (TPM); comparative analysis of amino acids; shell macromolecules stained with Alcian blue in SDS-electrophoresis; and peak assignment for the FTIR spectra. (DOCX 1542 kb)


  1. 1.
    Espinosa HD, Rim JE, Barthelat F, Buehler MJ (2009) Merger of structure and material in nacre and bone—perspectives on de novo biomimetic materials. Prog Mater Sci 54(8):1059–1100CrossRefGoogle Scholar
  2. 2.
    Meyers MA, Chen PY, Lin AYM, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53(1):1–206CrossRefGoogle Scholar
  3. 3.
    Carter JG (1990) Skeletal biomineralization: patterns, processes and evolutionary trends. Wiley Online Library, New YorkGoogle Scholar
  4. 4.
    Marin F, Marie B, Hamada SB, Ramos-Silva P, Le Roy N, Guichard N, Wolf SE, Montagnani C, Joubert C, Piquemal D (2013) Shellome’: proteins involved in mollusk shell biomineralization-diversity, functions. In: Recent Advances in Pearl Research, pp 149–166Google Scholar
  5. 5.
    Jackson A, Vincent J, Turner R (1988) The mechanical design of nacre. Proc R Soc Lond B Biol Sci 234(1277):415–440CrossRefGoogle Scholar
  6. 6.
    Watabe N (1965) Studies on shell formation: XI. Crystal—matrix relationships in the inner layers of mollusk shells. J Ultrastruct Res 12(3):351–370CrossRefGoogle Scholar
  7. 7.
    Westbroek P, Marin F (1998) A marriage of bone and nacre. Nature 392(6679):861–862CrossRefGoogle Scholar
  8. 8.
    Agbaje OBA, Thomas DE, Mclnerney BV, Molloy MP, Jacob DE (2017) Organic macromolecules in shells of Arctica islandica: comparison with nacroprismatic bivalve shells. Mar Biol 164:208CrossRefGoogle Scholar
  9. 9.
    Böhm CF, Demmert B, Harris J, Fey T, Marin F, Wolf SE (2016) Structural commonalities and deviations in the hierarchical organization of crossed-lamellar shells: a case study on the shell of the bivalve Glycymeris glycymeris. J Mater Res 31(5):536–546CrossRefGoogle Scholar
  10. 10.
    Agbaje OBA, Wirth R, Morales LFG, Shirai K, Kosnik M, Watanabe T, Jacob DE (2017) Architecture of crossed-lamellar bivalve shells: the southern giant clam (Tridacna derasa, Röding, 1798). R Soc Open Sci 4(9):170622CrossRefGoogle Scholar
  11. 11.
    Boggild OB (1930) The shell structure of the mollusks. Det Kongelige Danske Videnskabernes Selskabs Skrifter, Natruvidenskabelig og Mathematisk, Afdeling, Ser 9(2):231–326Google Scholar
  12. 12.
    Wilmot N, Barber D, Taylor J, Graham A (1992) Electron microscopy of molluscan crossed-lamellar microstructure. Philos Trans R Soc Lond B Biol Sci 337(1279):21–35CrossRefGoogle Scholar
  13. 13.
    Dauphin Y, Denis A (2000) Structure and composition of the aragonitic crossed lamellar layers in six species of Bivalvia and Gastropoda. Comp Biochem Physiol A Mol Integr Physiol 126(3):367–377CrossRefGoogle Scholar
  14. 14.
    MacClintock C (1967) Shell structure of patelloid and bellerophontoid gastropods (Mollusca). Yale Univ Peabody Mus Nat Hist Bull 22:1–32Google Scholar
  15. 15.
    Li X, Ji H, Yang W, Zhang G, Chen D (2017) Mechanical properties of crossed-lamellar structures in biological shells: a review. J Mech Behav Biomed Mater 74:54–71CrossRefGoogle Scholar
  16. 16.
    Almagro I, Drzymała P, Berent K, Saínz-Díaz CI, Willinger MG, Bonarski J, Checa AG (2016) New crystallographic relationships in biogenic aragonite: the crossed-lamellar microstructures of mollusks. Cryst Growth Des 16(4):2083–2093CrossRefGoogle Scholar
  17. 17.
    Ji HM, Jiang Y, Yang W, Zhang GP, Li XW (2015) Biological self-arrangement of fiber like aragonite and its effect on mechanical behavior of Veined rapa whelk shell. J Am Ceram Soc 98(10):3319–3325CrossRefGoogle Scholar
  18. 18.
    Yang W, Zhang G, Zhu X, Li X, Meyers M (2011) Structure and mechanical properties of Saxidomus purpuratus biological shells. J Mech Behav Biomed Mater 4(7):1514–1530CrossRefGoogle Scholar
  19. 19.
    Suzuki M, Kogure T, Weiner S, Addadi L (2011) Formation of aragonite crystals in the crossed lamellar microstructure of limpet shells. Cryst Growth Des 11(11):4850–4859CrossRefGoogle Scholar
  20. 20.
    Currey J, Kohn A (1976) Fracture in the crossed-lamellar structure of Conus shells. J Mater Sci 11(9):1615–1623. CrossRefGoogle Scholar
  21. 21.
    Farre B, Dauphin Y (2009) Lipids from the nacreous and prismatic layers of two Pteriomorphia Mollusc shells. Comp Biochem Physiol B Biochem Mol Biol 152(2):103–109CrossRefGoogle Scholar
  22. 22.
    Samata T, Ogura M (1997) First finding of lipid component in the nacreous layer of Pinctada fucata. J Fossil Res 30:66Google Scholar
  23. 23.
    Fu G, Valiyaveettil S, Wopenka B, Morse DE (2005) CaCO3 biomineralization: acidic 8-kDa proteins isolated from aragonitic abalone shell nacre can specifically modify calcite crystal morphology. Biomacromol 6(3):1289–1298CrossRefGoogle Scholar
  24. 24.
    Gotliv BA, Addadi L, Weiner S (2003) Mollusk shell acidic proteins: in search of individual functions. ChemBioChem 4(6):522–529CrossRefGoogle Scholar
  25. 25.
    Gotliv BA, Kessler N, Sumerel JL, Morse DE, Tuross N, Addadi L, Weiner S (2005) Asprich: a novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida. ChemBioChem 6(2):304–314CrossRefGoogle Scholar
  26. 26.
    Marin F, Luquet G (2005) Molluscan biomineralization: the proteinaceous shell constituents of Pinna nobilis L. Mater Sci Eng, C 25(2):105–111CrossRefGoogle Scholar
  27. 27.
    Samata T (1990) Ca-binding glycoproteins in molluscan shells with different types of ultrastructure. Veliger 33(2):190–201Google Scholar
  28. 28.
    Cusack M, Freer A (2008) Biomineralization: elemental and organic influence in carbonate systems. Chem Rev 108(11):4433–4454CrossRefGoogle Scholar
  29. 29.
    Dauphin Y (2003) Soluble organic matrices of the calcitic prismatic shell layers of two pteriomorphid bivalves Pinna nobilis and Pinctada margaritifera. J Biol Chem 278(17):15168–15177CrossRefGoogle Scholar
  30. 30.
    Marxen JC, Becker W (1997) The organic shell matrix of the freshwater snail, Biomphalaria glabrata. Comp Biochem Physiol B Biochem Mol Biol 118(1):23–33CrossRefGoogle Scholar
  31. 31.
    Marxen JC, Hammer M, Gehrke T, Becker W (1998) Carbohydrates of the organic shell matrix and the shell-forming tissue of the snail Biomphalaria glabrata (Say). Biol Bull 194(2):231–240CrossRefGoogle Scholar
  32. 32.
    Osuna-Mascaró A, Cruz-Bustos T, Benhamada S, Guichard N, Marie B, Plasseraud L, Corneillat M, Alcaraz G, Checa A, Marin F (2014) The shell organic matrix of the crossed lamellar queen conch shell (Strombus gigas). Comp Biochem Physiol B Biochem Mol Biol 168:76–85CrossRefGoogle Scholar
  33. 33.
    Giuffre AJ, Hamm LM, Han N, De Yoreo JJ, Dove PM (2013) Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc Natl Acad Sci USA 110(23):9261–9266CrossRefGoogle Scholar
  34. 34.
    Nudelman F (2015) Nacre biomineralisation: A review on the mechanisms of crystal nucleation. Seminars in Cell & Developmental Biology. Elsevier, New York, pp 2–10Google Scholar
  35. 35.
    Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325(5946):1388–1390CrossRefGoogle Scholar
  36. 36.
    Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271(5245):67–69CrossRefGoogle Scholar
  37. 37.
    Kamat S, Su X, Ballarini R, Heuer A (2000) Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405(6790):1036–1040CrossRefGoogle Scholar
  38. 38.
    Neves N, Mano J (2005) Structure/mechanical behavior relationships in crossed-lamellar sea shells. Mater Sci Eng C 25(2):113–118CrossRefGoogle Scholar
  39. 39.
    Li H, Jin D, Li R, Li X (2015) Structural and mechanical characterization of thermally treated conch shells. JOM 67(4):720–725CrossRefGoogle Scholar
  40. 40.
    Lamprell K, Whitehead T, Healy J (1992) Bivalves of Australia. Crawford House Press, GoolwaGoogle Scholar
  41. 41.
    Benzie J, Williams S (1992) No genetic differentiation of giant clam (Tridacna gigas) populations in the Great Barrier Reef, Australia. Mar Biol 113(3):373–377CrossRefGoogle Scholar
  42. 42.
    Dominguez JG, Kosnik MA, Allen AP, Hua Q, Jacob DE, Kaufman DS, Whitacre K (2016) Time averaging and stratigraphic resolution in death assemblages and Holocene deposits: Sydney Harbour’s molluscan record. Palaios 31(11):564–575CrossRefGoogle Scholar
  43. 43.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685CrossRefGoogle Scholar
  44. 44.
    Goldberg HA, Warner KJ (1997) The staining of acidic proteins on polyacrylamide gels: enhanced sensitivity and stability of “Stains-all” staining in combination with silver nitrate. Anal Biochem 251(2):227–233CrossRefGoogle Scholar
  45. 45.
    Myers JM, Veis A, Sabsay B, Wheeler A (1996) A method for enhancing the sensitivity and stability of Stains-all for phosphoproteins separated in sodium dodecyl sulfate–polyacrylamide gels. Anal Biochem 240(2):300–302CrossRefGoogle Scholar
  46. 46.
    Wall RS, Gyi TJ (1988) Alcian blue staining of proteoglycans in polyacrylamide gels using the “critical electrolyte concentration” approach. Anal Biochem 175(1):298–299CrossRefGoogle Scholar
  47. 47.
    Trudel J, Asselin A (1990) Detection of chitin deacetylase activity after polyacrylamide gel electrophoresis. Anal Biochem 189(2):249–253CrossRefGoogle Scholar
  48. 48.
    Neo ML, Eckman W, Vicentuan K, Teo SL-M, Todd PA (2015) The ecological significance of giant clams in coral reef ecosystems. Biol Conserv 181:111–123CrossRefGoogle Scholar
  49. 49.
    Su Y, Hung J-H, Kubo H, Liu L-L (2014) Tridacna noae (Röding, 1798)–a valid giant clam species separated from T. maxima (Röding, 1798) by morphological and genetic data. Raffles Bull Zool 19:62Google Scholar
  50. 50.
    Kobayashi I, Akai J (1994) Twinned aragonite crystals found in the bivalvian crossed lamellar shell structure. J Geol Soc Jpn 100(2):177–180CrossRefGoogle Scholar
  51. 51.
    Bonham K (1965) Growth rate of giant clam Tridacna gigas at Bikini Atoll as revealed by radioautography. Science 149(3681):300–302CrossRefGoogle Scholar
  52. 52.
    Popov SV (1986) Composite prismatic structure in bivalve shell. Acta Palaeontol Pol 31(1–2):3–26Google Scholar
  53. 53.
    Albani JR (2003) Förster energy-transfer studies between Trp residues of α 1-acid glycoprotein (orosomucoid) and the glycosylation site of the protein. Carbohydr Res 338(21):2233–2236CrossRefGoogle Scholar
  54. 54.
    Bezares J, Asaro RJ, Hawley M (2008) Macromolecular structure of the organic framework of nacre in Haliotis rufescens: implications for growth and mechanical behavior. J Struct Biol 163(1):61–75CrossRefGoogle Scholar
  55. 55.
    Suzuki M, Sakuda S, Nagasawa H (2007) Identification of chitin in the prismatic layer of the shell and a chitin synthase gene from the Japanese pearl oyster, Pinctada fucata. Biosci Biotechnol Biochem 71(7):1735–1744CrossRefGoogle Scholar
  56. 56.
    Ehrlich H, Maldonado M, Spindler KD, Eckert C, Hanke T, Born R, Goebel C, Simon P, Heinemann S, Worch H (2007) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera). J Exp Zool Part B Mol Dev Evol 308(4):347–356CrossRefGoogle Scholar
  57. 57.
    Younis S, Kauffmann Y, Pokroy B, Zolotoyabko E (2012) Atomic structure and ultrastructure of the Murex troscheli shell. J Struct Biol 180(3):539–545CrossRefGoogle Scholar
  58. 58.
    Venyaminov SY, Kalnin N (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers 30(13–14):1243–1257CrossRefGoogle Scholar
  59. 59.
    Marie B, Luquet G, Pais De Barros JP, Guichard N, Morel S, Alcaraz G, Bollache L, Marin F (2007) The shell matrix of the freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida). FEBS J 274(11):2933–2945CrossRefGoogle Scholar
  60. 60.
    Van Kuik J, Van Halbeek H, Kamerling J, Vliegenthart J (1985) Primary structure of the low molecular-weight carbohydrate chains of Helix pomatia alpha-hemocyanin. Xylose as a constituent of N-linked oligosaccharides in an animal glycoprotein. J Biol Chem 260(26):13984–13988Google Scholar
  61. 61.
    Idakieva K, Parvanova K, Nicholson G, Voelter W, Genov N (2001) Carbohydrate content and monosaccharide composition of dioxygen-binding functional units from Rapana thomasiana Hemocyaninlsoform RtH2. C R Acad Bulg Sci 54(10):73Google Scholar
  62. 62.
    Maverakis E, Kim K, Shimoda M, Gershwin ME, Wilken R, Raychaudhuri S, Ruhaak LR, Lebrilla CB (2015) Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. J Autoimmun 57:1–13CrossRefGoogle Scholar
  63. 63.
    Nollet LM, Toldrá F (2008) Handbook of muscle foods analysis. CRC Press, Boca RatonCrossRefGoogle Scholar
  64. 64.
    Marin F, Luquet G (2004) Molluscan shell proteins. CR Palevol 3:469–492CrossRefGoogle Scholar
  65. 65.
    Merry T, Astrautsova S (1996) Glycoproteins. In: Encyclopedia of life sciences (ELS). Wiley: ChichesterGoogle Scholar
  66. 66.
    Arias JL, Fernández MS (2008) Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chem Rev 108(11):4475–4482CrossRefGoogle Scholar
  67. 67.
    Campbell K, MacLennan D, Jorgensen A (1983) Staining of the Ca2+-binding proteins, calsequestrin, calmodulin, troponin C, and S-100, with the cationic carbocyanine dye” Stains-all”. J Biol Chem 258(18):11267–11273Google Scholar
  68. 68.
    Sudo S, Fujikawa T, Nagakura T, Ohkubo T, Sakaguchi K, Tanaka M, Nakashima K, Takahashi T (1997) Structures of mollusc shell framework proteins. Nature 387(6633):563–564CrossRefGoogle Scholar
  69. 69.
    Marie B, Zanella-Cléon I, Corneillat M, Becchi M, Alcaraz G, Plasseraud L, Luquet G, Marin F (2011) Nautilin-63, a novel acidic glycoprotein from the shell nacre of Nautilus macromphalus. FEBS J 278(12):2117–2130CrossRefGoogle Scholar
  70. 70.
    Kafetzopoulos D, Martinou A, Bouriotis V (1993) Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proc Natl Acad Sci USA 90(7):2564–2568CrossRefGoogle Scholar
  71. 71.
    Weiss IM, Schönitzer V (2006) The distribution of chitin in larval shells of the bivalve mollusk Mytilus galloprovincialis. J Struct Biol 153(3):264–277CrossRefGoogle Scholar
  72. 72.
    Levi-Kalisman Y, Falini G, Addadi L, Weiner S (2001) Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J Struct Biol 135(1):8–17CrossRefGoogle Scholar
  73. 73.
    Osuna-Mascaró AJ, Cruz-Bustos T, Marin F, Checa AG (2015) Ultrastructure of the interlamellar membranes of the nacre of the Bivalve pteria hirundo, determined by immunolabelling. PLoS ONE 10(4):e0122934CrossRefGoogle Scholar
  74. 74.
    Bezares J, Asaro RJ, Lubarda VA (2012) Core structure of aligned chitin fibers within the interlamellar framework extracted from Haliotis rufescens nacre. Part I: implications for growth and mechanical response. Theoret Appl Mech 39(4):343–363CrossRefGoogle Scholar
  75. 75.
    Dauphin Y, Marin F (1995) The compositional analysis of recent cephalopod shell carbohydrates by Fourier transform infrared spectrometry and high performance anion exchange-pulsed amperometric detection. Experientia 51(3):278–283CrossRefGoogle Scholar
  76. 76.
    Agbaje OBA, Ben Shir I, Zax DB, Schmidt A, Jacob DE (2018) Biomacromolecules within bivalve shells: is chitin abundant? Acta Biomater 80:176–187CrossRefGoogle Scholar
  77. 77.
    Wolf SE, Böhm CF, Harris J, Demmert B, Jacob DE, Mondeshki M, Ruiz-Agudo E, Rodríguez-Navarro C (2016) Nonclassical crystallization in vivo et in vitro (I): process-structure-property relationships of nanogranular biominerals. J Struct Biol 196(2):244–259CrossRefGoogle Scholar
  78. 78.
    Currey J, Taylor J (1974) The mechanical behaviour of some molluscan hard tissues. J Zool 173(3):395–406CrossRefGoogle Scholar
  79. 79.
    Wittig I, Schägger H (2009) Native electrophoretic techniques to identify protein–protein interactions. Proteomics 9(23):5214–5223CrossRefGoogle Scholar
  80. 80.
    Krause F (2006) Detection and analysis of protein–protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis:(membrane) protein complexes and supercomplexes. Electrophoresis 27(13):2759–2781CrossRefGoogle Scholar
  81. 81.
    Weiner S, Lowenstam H, Hood L (1977) Discrete molecular weight components of the organic matrices of mollusc shells. J Exp Mar Bio Ecol 30(1):45–51CrossRefGoogle Scholar
  82. 82.
    Manchenko GP (2002) Handbook of detection of enzymes on electrophoretic gels. CRC Press, Florida, pp 352–353Google Scholar
  83. 83.
    Butzloff PR (2011) Micro-CT imaging of denatured chitin by silver to explore honey bee and insect pathologies. PLoS ONE 6(11):e27448CrossRefGoogle Scholar
  84. 84.
    Suzuki M, Nagasawa H (2013) Mollusk shell structures and their formation mechanism 1. Can J Zool 91(6):349–366CrossRefGoogle Scholar
  85. 85.
    Carré M, Bentaleb I, Bruguier O, Ordinola E, Barrett NT, Fontugne M (2006) Calcification rate influence on trace element concentrations in aragonitic bivalve shells: evidences and mechanisms. Geochim Cosmochim Acta 70(19):4906–4920CrossRefGoogle Scholar
  86. 86.
    Weiner S, Lowenstam H, Taborek B, Hood L (1979) Fossil mollusk shell organic matrix components preserved for 80 million years. Paleobiology 5(2):144–150CrossRefGoogle Scholar
  87. 87.
    Ehrlich H, Rigby JK, Botting J, Tsurkan M, Werner C, Schwille P, Petrášek Z, Pisera A, Simon P, Sivkov V (2013) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci Rep 3:3497CrossRefGoogle Scholar
  88. 88.
    Miller RF (1991) Chitin paleoecology. Biochem Syst Ecol 19(5):401–411CrossRefGoogle Scholar
  89. 89.
    Hackman R (1960) Studies on chitin IV. The occurrence of complexes in which chitin and protein are covalently linked. J Aust Biol Sci 13(4):568–577CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesMacquarie UniversitySydneyAustralia
  2. 2.Australian Proteome Analysis Facility (APAF)Macquarie UniversitySydneyAustralia
  3. 3.Department of Biological SciencesMacquarie UniversitySydneyAustralia

Personalised recommendations