Advertisement

Journal of Materials Science

, Volume 54, Issue 5, pp 4202–4211 | Cite as

Preparing enhanced electrochemical performances Fe2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials by thermal decomposition of iron citrate

  • Yike Lei
  • Yonghu Li
  • Hongyu Jiang
  • Chunyan Lai
Energy materials
  • 84 Downloads

Abstract

The Fe2O3-coated LiNi1/3Co1/3Mn1/3O2 (NCM111-Fe) was successfully prepared via a co-precipitation reaction assisted by thermal decomposition of iron citrate. The crystal structure, morphologies and element condition of the samples were researched by XRD, SEM, TEM and XPS. The NCM111 was covered with Fe2O3-layer after thermal decomposition of iron citrate, and the existence of Fe2O3 layer did not change the pristine crystal structure of NCM111. Between 3.0 and 4.8 V, the NCM111-Fe delivered an initial capacity of 192.5 mA h g−1 at 0.1 C and 86.7% of the capacity remained after 100 cycles. In contrast, NCM111 exhibited an initial capacity of 187 mA h g−1 and only remained 63.5% after 100 cycles. The results indicated that the NCM111-Fe displayed weaker polarization, smaller charge-transfer resistance and better electrochemistry performance than the pristine sample.

Notes

Acknowledgements

This work was supported by Science and Technology Commission of Shanghai Municipality (No: 16020500800) and Natural Science Foundation of China (51402187).

References

  1. 1.
    Ilango PR, Subburaj T, Prasanna K, Jo YN, Lee CW (2015) Physical and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathodes coated by Sb2O3 using a sol–gel process. Mater Chem Phys 158:45–51.  https://doi.org/10.1016/j.matchemphys.2015.03.033 CrossRefGoogle Scholar
  2. 2.
    Yao Y, Liu H, Li G, Peng H, Chen K (2013) Synthesis and electrochemical performance of phosphate-coated porous LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. Electrochim Acta 113:340–345.  https://doi.org/10.1016/j.electacta.2013.09.071 CrossRefGoogle Scholar
  3. 3.
    Huang Z, Wang Z, Zheng X, Guo H, Li X, Jing Q, Yang Z (2015) Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Electrochim Acta 182:795–802.  https://doi.org/10.1016/j.electacta.2015.09.151 CrossRefGoogle Scholar
  4. 4.
    Wang C, Chen L, Zhang H, Yang Y, Wang F, Yin F, Yang G (2014) Li2ZrO3 coated LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium batteries. Electrochim Acta 119:236–242.  https://doi.org/10.1016/j.electacta.2013.12.038 CrossRefGoogle Scholar
  5. 5.
    Ding Y, Zhang P, Gao D (2008) Synthesis and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]0.96Ti0.04O1.96F0.04 as cathode material for lithium-ion batteries. J Alloys Compd 456:344–347.  https://doi.org/10.1016/j.jallcom.2007.02.074 CrossRefGoogle Scholar
  6. 6.
    Liang Y, Wen K, Mao Y, Liu Z, Zhu G, Yang F, He W (2015) Shape and size control of LiFePO4 for high-performance lithium-ion batteries. ChemElectroChem 2:1227–1237.  https://doi.org/10.1002/celc.201500114 CrossRefGoogle Scholar
  7. 7.
    Lv W, Niu Y, Jian X, Zhang K, Wang W, Zhao J, Wang Z, Yang W, He W (2016) Space matters: Li+ conduction versus strain effect at FePO4/LiFePO4 interface. Appl Phys Lett 108:083901.  https://doi.org/10.1063/1.4942849 CrossRefGoogle Scholar
  8. 8.
    Wang Z, Liu L, Chen L, Huang X (2002) Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries. Solid State Ion 148:335–342.  https://doi.org/10.1016/S0167-2738(02)00071-1 CrossRefGoogle Scholar
  9. 9.
    Qiu Q, Huang X, Chen Y, Tan Y, Lv W (2014) Al2O3 coated LiNi1/3Co1/3Mn1/3O2 cathode material by sol–gel method: preparation and characterization. Ceram Int 40:10511–10516.  https://doi.org/10.1016/j.ceramint.2014.03.023 CrossRefGoogle Scholar
  10. 10.
    Lin Y, Lu C (2009) Preparation and electrochemical properties of layer-structured LiNi1/3Co1/3Mn1/3−yAlyO2. J Power Sources 189:353–358.  https://doi.org/10.1016/j.jpowsour.2008.08.072 CrossRefGoogle Scholar
  11. 11.
    Lu M, Han E, Zhu L, Chen S, Zhang G (2016) The effects of Ti4+–Fe3+ co-doping on Li[Ni1/3Co1/3Mn1/3]O2. Solid State Ion 298:9–14.  https://doi.org/10.1016/j.ssi.2016.10.014 CrossRefGoogle Scholar
  12. 12.
    Baboo JP, Park H, Song J, Kim S, Jo J, Pham DT, Mathew V, Xiu Z, Kim J (2017) Facile redox synthesis of layered LiNi1/3Co1/3Mn1/3O2 for rechargeable Li-ion batteries. Electrochim Acta 224:243–250.  https://doi.org/10.1016/j.electacta.2016.12.050 CrossRefGoogle Scholar
  13. 13.
    Wang L, Ma Y, Qu Y, Cheng X, Zuo P, Du C, Gao Y, Yin G (2016) Influence of fluoroethylene carbonate as co-solvent on the high-voltage performance of LiNi1/3Co1/3Mn1/3O2 cathode for lithium-ion batteries. Electrochim Acta 191:8–15.  https://doi.org/10.1016/j.electacta.2016.01.032 CrossRefGoogle Scholar
  14. 14.
    Liu X, Li H, Li D, Ishida M, Zhou H (2013) PEDOT modified LiNi1/3Co1/3Mn1/3O2 with enhanced electrochemical performance for lithium ion batteries. J Power Sources 243:374–380.  https://doi.org/10.1016/j.jpowsour.2013.06.037 CrossRefGoogle Scholar
  15. 15.
    Cui Y, Xu S (2015) High tap density of Ni3(PO4)2 coated LiNi1/3Co1/3Mn1/3O2 with enhanced cycling performance at high cut-off voltage. J Chem Eng 23:315–320.  https://doi.org/10.1016/j.cjche.2014.03.001 Google Scholar
  16. 16.
    Guo X, Cong L, Zhao Q, Tai L, Wu X, Zhang J, Wang R, Xie H, Sun L (2015) Enhancement of electrochemical performance of LiNi1/3Co1/3Mn1/3O2 by surface modification with MnO2. J Alloys Compd 651:12–18.  https://doi.org/10.1016/j.jallcom.2015.06.270 CrossRefGoogle Scholar
  17. 17.
    Zhu G, Wen K, Lv W, Zhou X, Liang Y, Yang F, Chen Z, Zou M, Li J, Zhang Y, He W (2015) Materials insights into low-temperature performances of lithium-ion batteries. J Power Sources 300:29–40.  https://doi.org/10.1016/j.jpowsour.2015.09.056 CrossRefGoogle Scholar
  18. 18.
    Ye L, Wen K, Zhang Z, Yang F, Liang Y, Lv W, Lin Y, Gu J, Dickerson JH, He W (2016) Highly efficient materials assembly via electrophoretic deposition for electrochemical energy conversion and storage devices. Adv Energy Mater 6:1502018.  https://doi.org/10.1002/aenm.201502018 CrossRefGoogle Scholar
  19. 19.
    Han Z, Yu J, Zhan H, Liu X, Zhou Y (2014) Sb2O3-modified LiNi1/3Co1/3Mn1/3O2 material with enhanced thermal safety and electrochemical property. J Power Sources 254:106–111.  https://doi.org/10.1016/j.jpowsour.2013.11.126 CrossRefGoogle Scholar
  20. 20.
    Wu F, Wang M, Su Y, Chen S (2009) Surface modification of LiNi1/3Co1/3Mn1/3O2 with Y2O3 for lithium-ion battery. J Power Sources 189:743–747.  https://doi.org/10.1016/j.jpowsour.2008.08.014 CrossRefGoogle Scholar
  21. 21.
    Yang Z, Guo X, Xiang W, Hua W, Zhang J, He F, Wang K, Xiao Y, Zhong B (2017) K-doped layered LiNi0.5Co0.2Mn0.3O2 cathode material: towards the superior rate capability and cycling performance. J Alloys Compd 699:358–365.  https://doi.org/10.1016/j.jallcom.2016.11.245 CrossRefGoogle Scholar
  22. 22.
    Park S-H, Oh SW, Sun Y-K (2005) Synthesis and structural characterization of layered Li[Ni1/3+xCo1/3Mn1/3−2xMox]O2 cathode materials by ultrasonic spray pyrolysis. J Power Sources 146:622–625.  https://doi.org/10.1016/j.jpowsour.2005.03.078 CrossRefGoogle Scholar
  23. 23.
    Ding Y, Zhang P, Long Z, Jiang Y, Xu F (2009) Morphology and electrochemical properties of Al doped LiNi1/3Co1/3Mn1/3O2 nanofibers prepared by electrospinning. J Alloys Compd 487:507–510.  https://doi.org/10.1016/j.jallcom.2009.08.002 CrossRefGoogle Scholar
  24. 24.
    Ding Y, Zhang P, Jiang Y, Yin J, Lu Q, Gao D (2008) Synthesis and electrochemical properties of LiNi0.375Co0.25Mn0.375−xCrxO2−xFx cathode materials prepared by sol–gel method. Mater Res Bull 43:2005–2009.  https://doi.org/10.1016/j.materresbull.2007.10.009 CrossRefGoogle Scholar
  25. 25.
    He Y, Pei L, Liao X, Ma Z (2007) Synthesis of LiNi1/3Co1/3Mn1/3O2−zFz cathode material from oxalate precursors for lithium ion battery. J Fluor Chem 128:139–143.  https://doi.org/10.1016/j.jfluchem.2006.11.002 CrossRefGoogle Scholar
  26. 26.
    Cong L, Zhao Q, Wang Z, Zhang Y, Wu X, Zhang J, Wang R, Xie H, Sun L (2016) (PO4)3− polyanions doped LiNi1/3Co1/3Mn1/3O2: an ultrafast-rate, long-life and high-voltage cathode material for Li-ion rechargeable batteries. Electrochim Acta 201:8–19.  https://doi.org/10.1016/j.electacta.2016.03.088 CrossRefGoogle Scholar
  27. 27.
    Shi S, Tu J, Tang Y, Zhang Y, Liu X, Wang X, Gu CD (2013) Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sources 225:338–346.  https://doi.org/10.1016/j.jpowsour.2012.10.065 CrossRefGoogle Scholar
  28. 28.
    Hu S, Cheng G, Cheng M, Hwang B, Santhanam R (2009) Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Power Sources 188:564–569.  https://doi.org/10.1016/j.jpowsour.2008.11.113 CrossRefGoogle Scholar
  29. 29.
    Wang W, Yin Z, Wang J, Wang Z, Li X, Guo H (2015) Effect of heat-treatment on Li2ZrO3-coated LiNi1/3Co1/3Mn1/3O2 and its high voltage electrochemical performance. J Alloys Compd 651:737–743.  https://doi.org/10.1016/j.jallcom.2015.08.114 CrossRefGoogle Scholar
  30. 30.
    Liu X, Li H, Yoo E, Ishida M, Zhou H (2012) Fabrication of FePO4 layer coated LiNi1/3Co1/3Mn1/3O2: towards high-performance cathode materials for lithium ion batteries. Electrochim Acta 83:253–258.  https://doi.org/10.1016/j.electacta.2012.07.111 CrossRefGoogle Scholar
  31. 31.
    Hankhuntod A, Kantarak E, Sroila W, Kumpika T, Singjai P, Thongsuwan W (2017) α-Fe2O3 modified TiO2 nanoparticulate films prepared by sparking off Fe electroplated Ti tips. Appl Surf Sci.  https://doi.org/10.1016/j.apsusc.2017.11.224 Google Scholar
  32. 32.
    Mohan R, Paulose R (2018) An efficient electrochemical performance of Fe2O3/CNT nanocomposite coated dried Lagenaria siceraria shell electrode for electrochemical capacitor. Ceram Int 44:10990–10993.  https://doi.org/10.1016/j.ceramint.2018.03.154 CrossRefGoogle Scholar
  33. 33.
    Nguyen T-A, Lee S-W (2017) Green synthesis of N-doped carbon modified iron oxides (N-Fe2O3@Carbon) using sustainable gelatin cross-linker for high performance Li-ion batteries. Electrochim Acta 248:37–45.  https://doi.org/10.1016/j.electacta.2017.07.114 CrossRefGoogle Scholar
  34. 34.
    Ren W, Liu D, Sun C, Yao X, Tan J, Wang C, Zhao K, Wang X, Li Q, Mai L (2018) Nonhierarchical heterostructured Fe2O3/Mn2O3 porous hollow spheres for enhanced lithium storage. Small 14:e1800659.  https://doi.org/10.1002/smll.201800659 CrossRefGoogle Scholar
  35. 35.
    Li J, Xu Y, Li X, Zhang Z (2013) Li2MnO3 stabilized LiNi1/3Co1/3Mn1/3O2 cathode with improved performance for lithium ion batteries. Appl Surf Sci 285:235–240.  https://doi.org/10.1016/j.apsusc.2013.08.042 CrossRefGoogle Scholar
  36. 36.
    Machida N, Kashiwagi J, Naito M, Shigematsu T (2012) Electrochemical properties of all-solid-state batteries with ZrO2-coated LiNi1/3Co1/3Mn1/3O2 as cathode materials. Solid State Ion 225:354–358.  https://doi.org/10.1016/j.ssi.2011.11.026 CrossRefGoogle Scholar
  37. 37.
    He R, Zhang L, Yan M, Gao Y, Liu Z (2016) Effects of Cr2O3-modified LiNi1/3Co1/3Mn1/3O2 cathode materials on the electrochemical performance of lithium-ion batteries. J Mater Sci 52:4599–4607.  https://doi.org/10.1007/s10853-016-0704-z CrossRefGoogle Scholar
  38. 38.
    Gong C, Lv W, Qu L, Bankole OE, Li G, Zhang R, Hu M, Lei L (2014) Syntheses and electrochemical properties of layered Li0.95Na0.05Ni1/3Co1/3Mn1/3O2 and LiNi1/3Co1/3Mn1/3O2. J Power Sources 247:151–155.  https://doi.org/10.1016/j.jpowsour.2013.08.081 CrossRefGoogle Scholar
  39. 39.
    Pan X, Duan X, Lin X, Zong F, Tong X, Li Q, Wang T (2018) Rapid synthesis of Cr-doped γ-Fe2O3/reduced graphene oxide nanocomposites as high performance anode materials for lithium ion batteries. J Alloys Compd 732:270–279.  https://doi.org/10.1016/j.jallcom.2017.10.222 CrossRefGoogle Scholar
  40. 40.
    Xiaomin M, Ruijun W (2012) One-pot synthesis of novel energy materials: sub-micron Fe2O3 encapsuled carbon spheres core–shell composite. Energy Procedia 17:1585–1590.  https://doi.org/10.1016/j.egypro.2012.02.285 CrossRefGoogle Scholar
  41. 41.
    Zhou Y, Bai P, Tang H, Zhu J, Tang Z (2016) Chemical deposition synthesis of desirable high-rate capability Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a lithium ion battery cathode material. J Electroanal Chem 782:256–263.  https://doi.org/10.1016/j.jelechem.2016.10.049 CrossRefGoogle Scholar
  42. 42.
    Chen C, Geng T, Du C, Zuo P, Cheng X, Ma Y, Yin G (2016) Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. J Power Sources 331:91–99.  https://doi.org/10.1016/j.jpowsour.2016.09.051 CrossRefGoogle Scholar
  43. 43.
    Wang W, Yin Z, Wang Z, Li X, Guo H (2015) Effect of heat-treatment on electrochemical performance of Li3VO4-coated LiNi1/3Co1/3Mn1/3O2 cathode materials. Mater Lett 160:298–301.  https://doi.org/10.1016/j.matlet.2015.07.160 CrossRefGoogle Scholar
  44. 44.
    Zhang X, Chen Z, Schwarz B, Sigel F, Ehrenberg H, An K, Zhang Z, Zhang Q, Li Y, Li J (2017) Kinetic characteristics up to 4.8 V of layered LiNi1/3Co1/3Mn1/3O2 cathode materials for high voltage lithium-ion batteries. Electrochim Acta 227:152–161.  https://doi.org/10.1016/j.electacta.2017.01.014 CrossRefGoogle Scholar
  45. 45.
    Liu X, He P, Li H, Ishida M, Zhou H (2013) Improvement of electrochemical properties of LiNi1/3Co1/3Mn1/3O2 by coating with V2O5 layer. J Alloys Compd 552:76–82.  https://doi.org/10.1016/j.jallcom.2012.10.090 CrossRefGoogle Scholar
  46. 46.
    Chen Y, Zhang Y, Chen B, Wang Z, Lu C (2014) An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. J Power Sources 256:20–27.  https://doi.org/10.1016/j.jpowsour.2014.01.061 CrossRefGoogle Scholar
  47. 47.
    Luo Z, Sun Y, Liu H (2015) Electrochemical performance of a nano SnO2-modified LiNi1/3Co1/3Mn1/3O2 cathode material. Chin Chem Lett 26:1403–1408.  https://doi.org/10.1016/j.cclet.2015.06.007 CrossRefGoogle Scholar
  48. 48.
    Zheng J, Zhou W, Ma Y, Jin H, Guo L (2015) Combustion synthesis of LiNi1/3Co1/3Mn1/3O2 powders with enhanced electrochemical performance in LIBs. J Alloys Compd 635:207–212.  https://doi.org/10.1016/j.jallcom.2015.02.114 CrossRefGoogle Scholar
  49. 49.
    Du K, Huang J, Cao Y, Peng Z, Hu G (2013) Study of effects on LiNi0.8Co0.15Al0.05O2 cathode by LiNi1/3Co1/3Mn1/3O2 coating for lithium ion batteries. J Alloys Compd 574:377–382.  https://doi.org/10.1016/j.jallcom.2013.05.134 CrossRefGoogle Scholar
  50. 50.
    Yuan X, Xu Q, Wang C, Liu X, Liu H, Xia Y (2015) A facile and novel organic coprecipitation strategy to prepare layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high capacity and excellent cycling stability. J Power Sources 279:157–164.  https://doi.org/10.1016/j.jpowsour.2014.12.148 CrossRefGoogle Scholar
  51. 51.
    Du Q, Tang Z, Ma X, Zang Y, Sun X, Shao Y, Wen Z, Chen C (2015) Improving the electrochemical properties of high-energy cathode material LiNi0.5Co0.2Mn0.3O2 by Zr doping and sintering in oxygen. Solid State Ion 279:11–17.  https://doi.org/10.1016/j.ssi.2015.07.006 CrossRefGoogle Scholar
  52. 52.
    Okada K, Machida N, Naito M, Shigematsu T, Ito S, Fujiki S, Nakano M, Aihara Y (2014) Preparation and electrochemical properties of LiAlO2-coated Li(Ni1/3Mn1/3Co1/3)O2 for all-solid-state batteries. Solid State Ionics 255:120–127.  https://doi.org/10.1016/j.ssi.2013.12.019 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shanghai University of Electric PowerShanghaiPeople’s Republic of China
  2. 2.Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric PowerShanghaiPeople’s Republic of China

Personalised recommendations