Advertisement

Journal of Materials Science

, Volume 54, Issue 5, pp 4180–4191 | Cite as

One-pot facile route to fabricate the precursor of sulfonated graphene/N-doped mesoporous carbons composites for supercapacitors

  • Peng Chen
  • Chao Yang
  • Zi He
  • Kunkun Guo
Energy materials
  • 23 Downloads

Abstract

A facile one-pot aqueous route is firstly proposed to fabricate the precursor of sulfonated graphene/N-doped mesoporous carbons composite (SG/NMC). SG/NMC for supercapacitor applications is subsequently obtained by thermal pyrolysis of this precursor. The obtained SG/NMC possesses the ordered mesostructures with both lattice unit parameter about 14.3 nm and much wider distributions of pore sizes, as well as delivers a specific surface area high up to 1039.65 m2 g−1. Likewise, SG/NMC exhibits a high specific capacitance about 304.2 F g−1 at 1.0 A g−1, which is much higher than ordered mesoporous carbons (OMC, 128.9 F g−1) and N-doped mesoporous carbons (NMC, 223.3 F g−1). Moreover, the resultant carbon displays a capacitance of 209.2 F g−1 at a current density even up to 50 A g−1 and the capacity can be retained above 93% after 5000 cycles at 10 A g−1. The strategy demonstrated here is therefore expected to open up new routes to fabricate graphene and mesoporous carbons composites in aqueous solutions for supercapacitor applications.

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of National Natural Science Foundation of China (Grant No. 21674034).

Supplementary material

10853_2018_3122_MOESM1_ESM.docx (4.3 mb)
Supplementary material 1 (DOCX 4361 kb)

References

  1. 1.
    Chen AB, Yu YF, Li YT, Wang YY, Li YQ, Li SH, Xia KC (2016) Synthesis of macro-mesoporous carbon materials and hollow core/mesoporous shell carbon spheres as supercapacitors. J Mater Sci 51:4601–4608.  https://doi.org/10.1007/s10853-016-9774-1 CrossRefGoogle Scholar
  2. 2.
    He ZN, Zhang GX, Chen YM, Xie Y, Zhu T, Guo HB, Chen YG (2017) The effect of activation methods on the electrochemical performance of ordered mesoporous carbon for supercapacitor applications. J Mater Sci 52:2422–2434.  https://doi.org/10.1007/s10853-016-0536-x CrossRefGoogle Scholar
  3. 3.
    Lu SH, Guo KK, Xie Y, Ning JL (2018) Ordered mesoporous carbons loading on sulfonated graphene by multicomponents co-assembly for supercapacitor applications. Energy Technol 6:1975–1985.  https://doi.org/10.1002/ente.201800116 CrossRefGoogle Scholar
  4. 4.
    Liu D, Lei JH, Guo LP, Qu DY, Li Y, Su BL (2012) One-pot aqueous route to synthesize highly ordered cubic and hexagonal mesoporous carbons from resorcinol and hexamine. Carbon 50:476–487.  https://doi.org/10.1016/j.carbon.2011.09.002 CrossRefGoogle Scholar
  5. 5.
    Fang Y, Gu D, Zou Y, Wu ZX, Li FY, Che RC, Deng YH, Tu B, Zhao DY (2010) A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem Int Ed 122:497987–497991.  https://doi.org/10.1002/anie.201002849 CrossRefGoogle Scholar
  6. 6.
    Liu D, Xia LJ, Qu DY, Lei JH, Li Y, Su BL (2013) Synthesis of hierarchical fiberlike ordered mesoporous carbons with excellent electrochemical capacitance performance by a strongly acidic aqueous cooperative assembly route. J Mater Chem A 1:15447–15458.  https://doi.org/10.1039/C3TA13518G CrossRefGoogle Scholar
  7. 7.
    Wan Y, Shi YF, Zhao DY (2008) Supramolecular aggregates as templates: ordered mesoporous polymers and carbons. Chem Mater 20:932–945.  https://doi.org/10.1021/cm7024125 CrossRefGoogle Scholar
  8. 8.
    Song YJ, Li Z, Guo KK, Shao T (2016) Hierarchically ordered mesoporous carbon/graphene composites as supercapacitor electrode materials. Nanoscale 8:15671–15680.  https://doi.org/10.1039/C6NR04130B CrossRefGoogle Scholar
  9. 9.
    Liu D, Lei JH, Guo LP, Deng KJ (2011) Simple hydrothermal synthesis of ordered mesoporous carbons from resorcinol and hexamine. Carbon 49:2113–2119.  https://doi.org/10.1016/j.carbon.2011.01.047 CrossRefGoogle Scholar
  10. 10.
    Gu D, Bongard H, Meng Y, Miyasaka K, Terasaki O, Zhang FQ, Deng YH, Wu ZX, Feng D, Fang Y, Tu B, Schüth F, Zhao DY (2010) Growth of single-crystal mesoporous carbons with Im \(\bar{3}\)̅m symmetry. Chem Mater 22:4828–4833.  https://doi.org/10.1021/cm101648y CrossRefGoogle Scholar
  11. 11.
    Lu AH, Spliethoff B, Schüth F (2008) Aqueous synthesis of ordered mesoporous carbon via self-assembly catalyzed by amino acid. Chem Mater 20:5314–5319.  https://doi.org/10.1021/cm800362g CrossRefGoogle Scholar
  12. 12.
    Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6:2839–2855.  https://doi.org/10.1039/C3EE41444B CrossRefGoogle Scholar
  13. 13.
    Wei HM, Qian W, Fu N, Chen HJ, Liu JB, Jiang XZ, Lan GX, Lin HL, Han S (2017) Facile synthesis of nitrogen-doped porous carbons for CO2 capture and supercapacitors. J Mater Sci 52:10308–10320.  https://doi.org/10.1007/s10853-017-1087-5 CrossRefGoogle Scholar
  14. 14.
    Xie QX, Bao RR, Xie C, Zheng AR, Wu SH, Zhang YF, Zhang RW, Zhao P (2016) Core-shell n-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density. J Power Sources 317:133–142.  https://doi.org/10.1016/j.jpowsour.2016.03.099 CrossRefGoogle Scholar
  15. 15.
    Xie QX, Chen GH, Bao RR, Zhang YF, Wu SH (2017) Polystyrene foam derived nitrogen-enriched porous carbon/graphene composites with high volumetric capacitances for aqueous supercapacitors. Micropor Mesopor Mater 239:130–137.  https://doi.org/10.1016/j.micromeso.2016.10.007 CrossRefGoogle Scholar
  16. 16.
    Frackowiak E, Lota G, Machnikowski J, Vix-Guterl C, Béguin F (2006) Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content. Electrochim Acta 51:2209–2214.  https://doi.org/10.1016/j.electacta.2005.04.080 CrossRefGoogle Scholar
  17. 17.
    Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ (2009) Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater 19:1800–1809.  https://doi.org/10.1002/adfm.200801100 CrossRefGoogle Scholar
  18. 18.
    Li Z, Guo KK, Chen XL (2017) Controllable synthesis of nitrogen-doped mesoporous carbons for supercapacitor applications. RSC Adv 7:30521–30532.  https://doi.org/10.1039/C7RA02701J CrossRefGoogle Scholar
  19. 19.
    Wang J, Liu HY, Diao JY, Gu XM, Wang HH, Rong JF, Zong BN, Su DS (2015) Size-controlled nitrogen-containing mesoporous carbon nanospheres by one-step aqueous self-assembly strategy. J Mater Chem A 3:2305–2313.  https://doi.org/10.1039/C4TA05820H CrossRefGoogle Scholar
  20. 20.
    Hu YT, Liu HJ, Ke QQ, Wang J (2014) Effects of nitrogen doping on supercapacitor performance of a mesoporous carbon electrode produced by a hydrothermal soft-templating process. J Mater Chem A 2:11753–11758.  https://doi.org/10.1039/C4TA01269K CrossRefGoogle Scholar
  21. 21.
    Chen M, Shao LL, Liu YP, Ren TZ, Yuan ZY (2015) Nitrogen-doped ordered cubic mesoporous carbons as metal-free counter electrodes for dye-sensitized solar cells. J Power Sources 283:305–313.  https://doi.org/10.1016/j.jpowsour.2015.02.139 CrossRefGoogle Scholar
  22. 22.
    Gadiou R, Didion A, Gearba RI, Ivanov DA, Czekaj I, Kötz R, Vix-Guterl C (2008) Synthesis and properties of new nitrogen-doped nanostructured carbon materials obtained by templating of mesoporous silicas with aminosugars. J Phys Chem Solids 69:1808–1814.  https://doi.org/10.1016/j.jpcs.2008.01.006 CrossRefGoogle Scholar
  23. 23.
    Shao YL, El-Kady MF, Wang LJ, Zhang QH, Li YG, Wang HZ, Mousavi MF, Kaner RB (2015) Graphene-based materials for flexible supercapacitors. Chem Soc Rev 44:3639–3665.  https://doi.org/10.1039/C4CS00316K CrossRefGoogle Scholar
  24. 24.
    Şanlı LI, Yarar B, Bayram V, Gürsel SA (2017) Electrosprayed catalyst layers based on graphene-carbon black hybrids for the next-generation fuel cell electrodes. J Mater Sci 52:2091–2102.  https://doi.org/10.1007/s10853-016-0497-0 CrossRefGoogle Scholar
  25. 25.
    Xie QX, Bao RR, Zheng AR, Zhang YF, Wu SH, Xie C, Zhao P (2016) Sustainable low-cost green electrodes with high volumetric capacitance for aqueous symmetric supercapacitors with high energy density. ACS Sustain Chem Eng 4:1422–1430.  https://doi.org/10.1021/acssuschemeng.5b01417 CrossRefGoogle Scholar
  26. 26.
    Liu RL, Wan L, Liu SQ, Pan LX, Wu DQ, Zhao DY (2015) An interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors. Adv Funct Mater 25:526–533.  https://doi.org/10.1002/adfm.201403280 CrossRefGoogle Scholar
  27. 27.
    Qiu JL, Wang Y, Wu FJ, Liu W, Zhang ST (2017) Graphene-containing ordered mesoporous carbons synthesized by one-pot aqueous route and its electrochemical performance. Polym Compos 38:1438–1446.  https://doi.org/10.1002/pc.23711 CrossRefGoogle Scholar
  28. 28.
    Lee WH, Moon JH (2014) Monodispersed N-doped carbon nanospheres for supercapacitor application. ACS Appl Mater Int 6:13968–13976.  https://doi.org/10.1021/am5033378 CrossRefGoogle Scholar
  29. 29.
    Li Z, Xu ZW, Tan XH, Wang HL, Holt CMB, Stephenson T, Olsen BC, Mitlin D (2013) Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ Sci 6:871–878.  https://doi.org/10.1039/C2EE23599D CrossRefGoogle Scholar
  30. 30.
    Xie QX, Zhao P, Wu SH, Zhang YF (2017) Flexible carbon@graphene composite cloth for advanced lithium-sulfur batteries and supercapacitors with enhanced energy storage capability. J Mater Sci 52:13478–13489.  https://doi.org/10.1007/s10853-017-1451-5 CrossRefGoogle Scholar
  31. 31.
    Gu WT, Sevilla M, Magasinski A, Fuertes AB, Yushin G (2013) Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. Energy Environ Sci 6:2465–2476.  https://doi.org/10.1039/C3EE41182F CrossRefGoogle Scholar
  32. 32.
    Ji HM, Wang T, Liu Y, Lu CL, Yang G, Ding WP, Hou WH (2016) A novel approach for sulfur-doped hierarchically porous carbon with excellent capacitance for electrochemical energy storage. Chem Commun 52:12725–12728.  https://doi.org/10.1039/C6CC05921J CrossRefGoogle Scholar
  33. 33.
    Song YF, Yang J, Wang K, Haller S, Wang YG, Wang CX, Xia YY (2016) In-situ synthesis of graphene/nitrogen-doped ordered mesoporous carbon nanosheet for supercapacitor application. Carbon 96:955–964.  https://doi.org/10.1016/j.carbon.2015.10.060 CrossRefGoogle Scholar
  34. 34.
    Yang X, Niu H, Jiang H, Sun ZQ, Wang Q, Qu FY (2018) One-Step synthesis of NiCo2S4/graphene composite for asymmetric supercapacitors with superior performances. ChemElectroChem 12:1576–1585.  https://doi.org/10.1002/celc.201800302 CrossRefGoogle Scholar
  35. 35.
    Li Q, Wu XZ, Zhao Y, Miao ZC, Xing LB, Zhou J, Zhao JP, Zhuo SP (2018) Nitrogen-doped hierarchical porous carbon through one-step activation of bean curd for high-performance supercapacitor electrode. ChemElectroChem 12:1606–1614.  https://doi.org/10.1002/celc.201800230 CrossRefGoogle Scholar
  36. 36.
    Lin TT, Wang WD, Lü QF, Zhao HB, Zhang XQ, Lin QL (2015) Graphene-wrapped nitrogen-containing carbon spheres for electrochemical supercapacitor application. J Anal Appl Pyrol 113:545–550.  https://doi.org/10.1016/j.jaap.2015.03.013 CrossRefGoogle Scholar
  37. 37.
    Chen P, Lu SH, Yang C, He Z, Chen XL, Guo KK (2018) Ordered Mesoporous carbons loading on graphene after different molten salt activations for supercapacitor applications. Energy Technol.  https://doi.org/10.1002/ente.201800281 CrossRefGoogle Scholar
  38. 38.
    Zeng D, Dou YP, Li M, Zhou M, Li HM, Jiang K, Yang F, Peng JJ (2018) Wool fiber-derived nitrogen-doped porous carbon prepared from molten salt carbonization method for supercapacitor application. J Mater Sci 53:8372–8384.  https://doi.org/10.1007/s10853-018-2035-8 Google Scholar
  39. 39.
    Zhou M, Pu F, Wang Z, Guan SY (2014) Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68:185–194.  https://doi.org/10.1016/j.carbon.2013.10.079 CrossRefGoogle Scholar
  40. 40.
    Cai TW, Zhou M, Ren DY, Han GS, Guan SY (2013) Highly ordered mesoporous phenol-formaldehyde carbon as supercapacitor electrode material. J Power Sources 231:197–202.  https://doi.org/10.1016/j.jpowsour.2012.12.072 CrossRefGoogle Scholar
  41. 41.
    Song YF, Li L, Wang YG, Wang CX, Guo ZP, Xia YY (2014) Nitrogen-doped ordered mesoporous carbon with a high surface area, synthesized through organic-inorganic coassembly, and its application in supercapacitors. ChemPhysChem 15:2084–2093.  https://doi.org/10.1002/cphc.201402250 CrossRefGoogle Scholar
  42. 42.
    Lin TQ, Chen IW, Liu FX, Yang CY, Bi H, Xu FF, Huang FQ (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350:1508–1513.  https://doi.org/10.1126/science.aab3798 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations