Advertisement

Journal of Materials Science

, Volume 54, Issue 5, pp 4154–4167 | Cite as

Rapid microwave-irradiation synthesis of ZnCo2O4/ZnO nanocrystals/carbon nanotubes composite as anodes for high-performance lithium-ion battery

  • Ping Huang
  • Miao Zhang
  • Jinwei Kang
  • Huagui Feng
  • Qingmei Su
  • Gaohui Du
  • Yuan Yu
  • Bingshe Xu
Energy materials
  • 760 Downloads

Abstract

ZnCo2O4/ZnO/carbon nanotubes (ZZCO/CNTs) nanocomposite is fabricated via a facile and rapid strategy of microwave-irradiation process followed by annealing. The nanocomposites are composed of ZnCo2O4/ZnO (ZZCO) nanocrystals (~ 5 nm) coated on the surfaces of carbon nanotubes, and the introduction of carbon nanotubes can greatly improve the conductivity and stability of the hybrid material and effectively prevent the aggregation of ZZCO nanoparticles. When considered as an anode material for lithium-ion batteries, the as-synthesized ZZCO/CNTs nanocomposite exhibits a high-reversible specific capacity of around 1440 mAh g−1 at the current density of 100 mA g−1, excellent cycling stability up to 200 cycles at a high current density of 500 mA g−1 and superior rate performance.

Notes

Acknowledgement

The authors gratefully acknowledge financial supports from the National Science Foundation of China (Nos. 11574273 and 21203168) and the Natural Science Foundation of Zhejiang Province (No. LY16B030003).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ge X, Li Z, Wang C, Yin L (2015) Metal-organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery. ACS Appl Mater Interfaces 7:26633–26642CrossRefGoogle Scholar
  2. 2.
    Su QM, Xie D, Zhang J, Du GH, Xu BS (2013) In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/Graphene anode during lithiation-delithiation processes. ACS Nano 7:9115–9121CrossRefGoogle Scholar
  3. 3.
    Wang X, Hou X, Mao J, Gao Y, Ru Q, Hu S, K-h Lam (2016) Synthesis of intertwined Zn0.5Mn0.5Fe2O4@CNT composites as a superior anode material for Li-ion batteries. J Mater Sci 51:5843–5856.  https://doi.org/10.1007/s10853-016-9886-7 CrossRefGoogle Scholar
  4. 4.
    Bai J, Wang K, Feng J, Xiong S (2015) ZnO/CoO and ZnCo2O4 hierarchical bipyramid nanoframes: morphology control, formation mechanism, and their lithium storage properties. ACS Appl Mater Interfaces 7:22848–22857CrossRefGoogle Scholar
  5. 5.
    Bai W, Tong H, Gao Z, Yue S, Xing S, Dong S, Shen L, He J, Zhang X, Liang Y (2015) Preparation of ZnCo2O4 nanoflowers on a 3D carbon nanotube/nitrogen-doped graphene film and its electrochemical capacitance. J Mater Chem A 3:21891–21898CrossRefGoogle Scholar
  6. 6.
    Zhao Y, Li X, Yan B, Xiong D, Li D, Lawes S, Sun X (2016) Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater 6:1502175–1502194CrossRefGoogle Scholar
  7. 7.
    Song X, Ru Q, Mo Y, Hu S, An B (2014) A novel fiber bundle structure ZnCo2O4 as a high capacity anode material for lithium-ion battery. J Alloys Compd 606:219–225CrossRefGoogle Scholar
  8. 8.
    Ru Q, Song X, Mo Y, Guo L, Hu S (2016) Carbon nanotubes modified for ZnCo2O4 with a novel porous polyhedral structure as anodes for lithium ion batteries with improved performances. J Alloys Compd 654:586–592CrossRefGoogle Scholar
  9. 9.
    Song X, Ru Q, Zhang B, Hu S, An B (2014) Flake-by-flake ZnCo2O4 as a high capacity anode material for lithium-ion battery. J Alloys Compd 585:518–522CrossRefGoogle Scholar
  10. 10.
    Yuan J, Chen C, Hao Y, Zhang X, Gao S, Agrawal R, Wang C, Xiong Z, Yu H, Xie Y (2017) A facile synthetic strategy to three-dimensional porous ZnCo2O4 thin films on Ni foams for high-performance lithium-ion battery anodes. J Electroanal Chem 787:158–162CrossRefGoogle Scholar
  11. 11.
    Yao L, Su Q, Xiao Y, Huang M, Li H, Deng H, Du G (2017) Facial synthesis of carbon-coated ZnFe2O4/graphene and their enhanced lithium storage properties. J Nanopart Res 19:261CrossRefGoogle Scholar
  12. 12.
    Luo W, Hu X, Sun Y, Huang Y (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916CrossRefGoogle Scholar
  13. 13.
    Chen C, K-H Lam, Liu B-J, Hou X-H, Wu Y-P (2017) Chemical integration of reduced graphene oxide sheets encapsulated ZnCo2O4 quantum dots achieving excellent capacity storage for lithium-ion batteries. Electrochim Acta 245:672–684CrossRefGoogle Scholar
  14. 14.
    Wang W-W (2008) Microwave-induced polyol-process synthesis of (MFe2O4)-Fe-II (M = Mn, Co) nanoparticles and magnetic property. Mater Chem Phys 108:227–231CrossRefGoogle Scholar
  15. 15.
    Song X-Z, Qiao L, Sun K-M, Tan Z, Ma W, Kang X-L, Sun F-F, Huang T, Wang X-F (2018) Triple-shelled ZnO/ZnFe2O4 heterojunctional hollow microspheres derived from Prussian Blue analogue as high-performance acetone sensors. Sens Actuators B Chem 256:374–382CrossRefGoogle Scholar
  16. 16.
    Qu B, Hu L, Li Q, Wang Y, Chen L, Wang T (2014) High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors. ACS Appl Mater Interfaces 6:731–736CrossRefGoogle Scholar
  17. 17.
    Mondal AK, Su D, Chen S, Xie X, Wang G (2014) Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl Mater Interfaces 6:14827–14835CrossRefGoogle Scholar
  18. 18.
    Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135:8452–8455CrossRefGoogle Scholar
  19. 19.
    Liu ZQ, Cheng H, Li N, Ma TY, Su YZ (2016) ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv Mater 28:3777–3784CrossRefGoogle Scholar
  20. 20.
    Adams RA, Pol VG, Varma A (2017) Tailored solution combustion synthesis of high performance ZnCo2O4 anode materials for lithium-ion batteries. Ind Eng Chem Res 56:7173–7183CrossRefGoogle Scholar
  21. 21.
    Du N, Xu Y, Zhang H, Yu J, Zhai C, Yang D (2011) Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-ion batteries. Inorg Chem 50:3320–3324CrossRefGoogle Scholar
  22. 22.
    Pascu O, Carenza E, Gich M, Estradé S, Peiró F, Herranz G, Roig A (2012) Surface reactivity of iron oxide nanoparticles by microwave-assisted synthesis, comparison with the thermal decomposition route. J Phys Chem C 116:15108–15116CrossRefGoogle Scholar
  23. 23.
    Dziedzic RM, Gillian-Daniel AL, Petersen GM, Martínez-Hernández KJ (2014) Microwave synthesis of zinc hydroxy sulfate nanoplates and zinc oxide nanorods in the classroom. J Chem Educ 91:1710–1714CrossRefGoogle Scholar
  24. 24.
    Opembe NN, King’ondu CK, Espinal AE, Chen C-H, Nyutu EK, Crisostomo VM, Suib SL (2010) Microwave-assisted synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanomaterials under continuous flow conditions. J Phys Chem C 114:14417–14426CrossRefGoogle Scholar
  25. 25.
    Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374CrossRefGoogle Scholar
  26. 26.
    Liang Y, Wang H, Diao P, Chang W, Hong G, Li Y, Gong M, Xie L, Zhou J, Wang J, Regier TZ, Wei F, Dai H (2012) Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J Am Chem Soc 134:15849–15857CrossRefGoogle Scholar
  27. 27.
    Yu L, Guan B, Xiao W, Lou XW (2015) Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv Energy Mater 5:1500981CrossRefGoogle Scholar
  28. 28.
    Du W, Liu R, Jiang Y, Lu Q, Fan Y, Gao F (2013) Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J Power Sources 227:101–105CrossRefGoogle Scholar
  29. 29.
    Shen L, Yu L, Yu X-Y, Zhang X, Lou XW (2015) Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew Chem Int Ed 54:1868–1872CrossRefGoogle Scholar
  30. 30.
    Ding E, Li A, Liu H, Liu W, Chen F, Li T, Wang B (2018) Facile synthesis of ultrathin two-dimensional nanosheets-constructed MCo2O4 (M = Ni, Cu, Zn) nanotubes for efficient photocatalytic oxygen evolution. Nanoscale 10:3871–3876CrossRefGoogle Scholar
  31. 31.
    Zhao Y, Li Z, Lv Z, Liang X, Min J, Wang L, Shi Y (2010) A new phase and optical properties of the N-doped ZnO film. Mater Res Bull 45:1046–1050CrossRefGoogle Scholar
  32. 32.
    Costa S, Borowiak-Palen E, Kruszyńska M, Bachmatiuk A, Kaleńczuk RJ (2008) Characterization of carbon nanotubes by Raman spectroscopy. Materials Science-Poland 26:433–441Google Scholar
  33. 33.
    Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett 10:751–758CrossRefGoogle Scholar
  34. 34.
    Jiang F, Su QM, Li HJ, Yao LB, Deng HH, Du GH (2017) Growth of ultrafine CuCo2O4 nanoparticle on graphene with enhanced lithium storage properties. Chem Eng J 314:301–310CrossRefGoogle Scholar
  35. 35.
    Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 60:413–550CrossRefGoogle Scholar
  36. 36.
    Zhang K, Gao X, Zhang Q, Li T, Chen H, Chen X (2017) Synthesis, characterization and electromagnetic wave absorption properties of asphalt carbon coated graphene/magnetic NiFe2O4 modified multi-wall carbon nanotube composites. J Alloys Compd 721:268–275CrossRefGoogle Scholar
  37. 37.
    Mary AJC, Bose AC (2017) Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor. Appl Surf Sci 425:201–211CrossRefGoogle Scholar
  38. 38.
    Kim JG, Kim Y, Noh Y, Kim WB (2014) Formation of carbon-coated ZnFe2O4 nanowires and their highly reversible lithium storage properties. RSC Adv 4:27714CrossRefGoogle Scholar
  39. 39.
    Venkatachalam V, Alsalme A, Alswieleh A, Jayavel R (2017) Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications. Chem Eng J 321:474–483CrossRefGoogle Scholar
  40. 40.
    Bai J, Li X, Liu G, Qian Y, Xiong S (2014) Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv Funct Mater 24:3012–3020CrossRefGoogle Scholar
  41. 41.
    Liu Y, Jiang H, Hao J, Liu Y, Shen H, Li W, Li J (2017) Metal-organic framework derived reduced graphene oxide supported ZnO/ZnCo2O4/C hollow nanocages as cathode catalysts for aluminum-O2 batteries. ACS Appl Mater Interfaces 9:31841–31852CrossRefGoogle Scholar
  42. 42.
    Lu L, Xu S, Luo Z, Wang S, Li G, Feng C (2016) Synthesis of ZnCo2O4 microspheres with Zn0.33Co0.67CO3 precursor and their electrochemical performance. J Nanopart Res 18:183CrossRefGoogle Scholar
  43. 43.
    Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2011) High reversible capacity of SnO2 graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:4532–4539CrossRefGoogle Scholar
  44. 44.
    Zhao N, Wu S, He C, Wang Z, Shi C, Liu E, Li J (2013) One-pot synthesis of uniform Fe3O4 nanocrystals encapsulated in interconnected carbon nanospheres for superior lithium storage capability. Carbon 57:130–138CrossRefGoogle Scholar
  45. 45.
    Yao W, Dai Y, Ge K, Luo J, Shi Q, Xu J (2016) Strongly coupled hybrid ZnCo2O4 quantum dots/reduced graphene oxide with high-performance lithium storage capability. Electrochim Acta 210:783–791CrossRefGoogle Scholar
  46. 46.
    Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313CrossRefGoogle Scholar
  47. 47.
    Huang G, Li Q, Yin D, Wang L (2017) Hierarchical porous Te@ZnCo2O4 nanofibers derived from Te@Metal-organic frameworks for superior lithium storage capability. Adv Funct Mater 27:1604941CrossRefGoogle Scholar
  48. 48.
    Rai AK, Trang VuT, Paul BJ, Kim J (2014) Synthesis of nano-sized ZnCo2O4 anchored with graphene nanosheets as an anode material for secondary lithium ion batteries. Electrochim Acta 146:577–584CrossRefGoogle Scholar
  49. 49.
    Hou X, Bai S, Xue S, Shang X, Fu Y, He D (2017) Wrinkled-paper-like ZnCo2O4 nanoflakes as a superior anode material for ultrahigh-rate lithium-ion batteries. J Alloys Compd 711:592–597CrossRefGoogle Scholar
  50. 50.
    Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011CrossRefGoogle Scholar
  51. 51.
    Wang X, Fan Y, Agung Susantyoko R, Xiao Q, Sun L, He D, Zhang Q (2014) High areal capacity Li ion battery anode based on thick mesoporous Co3O4 nanosheet networks. Nano Energy 5:91–96CrossRefGoogle Scholar
  52. 52.
    Wang Z, Luan D, Madhavi S, Hu Y, Lou XW (2012) Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ Sci 5:5252–5256CrossRefGoogle Scholar
  53. 53.
    Qiao L, Wang X, Qiao L, Sun X, Li X, Zheng Y, He D (2013) Single electrospun porous NiO-ZnO hybrid nanofibers as anode materials for advanced lithium-ion batteries. Nanoscale 5:3037–3042CrossRefGoogle Scholar
  54. 54.
    Mai L, Tian X, Xu X, Chang L, Xu L (2014) Nanowire Electrodes for Electrochemical Energy Storage Devices. Chem Rev 114:11828–11862CrossRefGoogle Scholar
  55. 55.
    Yao LB, Deng HH, Huang Q-A, Su QM, Du XM, Du GH (2017) Facile synthesis of CoFe2O4 quantum dots/N-doped graphene composite with enhanced lithium-storage performance. J Alloys Compd 693:929–935CrossRefGoogle Scholar
  56. 56.
    Kundu M, Ng CCA, Petrovykh DY, Liu L (2013) Nickel foam supported mesoporous MnO2 nanosheet arrays with superior lithium storage performance. Chem Commun 49:8459–8461CrossRefGoogle Scholar
  57. 57.
    Su L, Zhou Z, Qin X, Tang Q, Wu D, Shen P (2013) CoCO3 submicrocube/graphene composites with high lithium storage capability. Nano Energy 2:276–282CrossRefGoogle Scholar
  58. 58.
    Su Q, Du G, Zhang J, Zhong Y, Xu B, Yang Y, Neupane S, Kadel K, Li W (2013) In situ transmission electron microscopy investigation of the electrochemical lithiation-delithiation of individual Co9S8/Co-filled carbon nanotubes. ACS Nano 7:11379–11387CrossRefGoogle Scholar
  59. 59.
    Xu J-S, Zhu Y-J (2012) Monodisperse Fe3O4 and gamma-Fe2O3 magnetic mesoporous microspheres as anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 4:4752–4757CrossRefGoogle Scholar
  60. 60.
    He P, Zhang G, Liao X, Yan M, Xu X, An Q, Liu J, Mai L (2018) Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv Energy Mater.  https://doi.org/10.1002/aenm.201702463 Google Scholar
  61. 61.
    Xu J, He L, Wang Y, Zhang C, Zhang Y (2016) Preparation of bi-component ZnO/ZnCo2O4 nanocomposites with improved electrochemical performance as anode materials for lithium-ion batteries. Electrochim Acta 191:417–425CrossRefGoogle Scholar
  62. 62.
    Zhang Y, Li L, Su H, Huang W, Dong X (2015) Binary metal oxide: advanced energy storage materials in supercapacitors. J Mater Chem A 3:43–59CrossRefGoogle Scholar
  63. 63.
    Shi W, Zhao H, Lu B (2017) Core-shell ZnCo2O4@TiO2 nanowall arrays as anodes for lithium ion batteries. Nanotechnology 28:165403CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Physical ChemistryZhejiang Normal UniversityJinhuaChina
  2. 2.Materials Institute of Atomic and Molecular ScienceShaanxi University of Science and TechnologyXi’anChina

Personalised recommendations