Advertisement

Journal of Materials Science

, Volume 54, Issue 5, pp 4124–4134 | Cite as

Advanced sodium-ion pseudocapacitor performance of oxygen-implanted hard carbon derived from carbon spheres

  • Li Yin
  • Junlan Feng
  • Xuehua Zhang
  • Lin Li
  • Jianshuang Liu
  • Hui He
  • Yongxing Lin
Energy materials
  • 56 Downloads

Abstract

Sodium-ion capacitors (NICs) are rising as a promising candidate for next-generation energy storage systems owing to the abundance of sodium resources and the better performance than that of their lithium-ion capacitor counterparts. The design of the pseudocapacitive electrode materials is of great significance for an integrated device to have high energy and power densities. In this work, activated hard carbon (AHC) with a high surface area and abundant oxygen-containing functional groups is synthesized via the KOH activation of controllable carbon spheres that act as a special type of precursors. The AHC can be used as a supercapacitor-type material because it exhibits excellent properties as anode or cathode of sodium-ion batteries. The integrated symmetrical NIC with the AHC as both anode and cathode is superior to most previously reported all-carbon-based capacitors in terms of electrochemical performance. Benefiting from the oxygen-containing groups on the surface of the AHC, the pseudocapacitor shows an energy density of 43 Wh kg−1 at a power density of 3724 W kg−1 after 5000 cycles. This study not only provides a novel electrode material for NICs but also deepens the understanding of all-carbon-based capacitors.

Notes

Acknowledgements

The authors acknowledge financial support from National Natural Science Foundation of China (Nos. 51602357 and 51771168).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Dubal DP, Ayyad O, Ruiz V, Gomez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44:1777–1790CrossRefGoogle Scholar
  2. 2.
    Hwang JY, Myung ST, Sun YK (2017) Sodium ion batteries: present and future. Chem Soc Rev 46:3485–3856CrossRefGoogle Scholar
  3. 3.
    Ding J, Wang H, Li Z, Cui K, Karpuzov D, Tan X, Kohandehghan A, Mitlin D (2015) Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ Sci 8:941–955CrossRefGoogle Scholar
  4. 4.
    Liu H, Song H, Chen X, Zhang S, Zhou J, Ma Z (2015) Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors. J Power Sources 285:303–309CrossRefGoogle Scholar
  5. 5.
    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRefGoogle Scholar
  6. 6.
    Kim DJ, Jung YH, Bharathi KK, Je SH, Kim DK, Coskun A, Choi JW (2014) An aqueous sodium ion hybrid battery incorporating an organic compound and a prussian blue derivative. Adv Energy Mater 4:1400133CrossRefGoogle Scholar
  7. 7.
    He G, Huq A, Kan WH, Manthiram A (2016) β-NaVOPO4 obtained by a low-temperature synthesis process: a new 3.3 V cathode for Sodium ion batteries. Chem Mater 28:1503–1512CrossRefGoogle Scholar
  8. 8.
    Jin W, Toutianoush A, Pyrasch M, Schnepf J, Gottschalk H, Rammensee W, Tieke B (2003) Self-assembled films of prussian blue and analogues: structure and morphology, elemental composition, film growth, and nanosieving of ions. J Phys Chem B 107:12062–12070CrossRefGoogle Scholar
  9. 9.
    Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L (2016) Na-ion battery anodes: materials and electrochemistry. Acc Chem Res 49:231–240CrossRefGoogle Scholar
  10. 10.
    Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium ion batteries. Adv Funct Mater 23:947–958CrossRefGoogle Scholar
  11. 11.
    Hu M, Yang L, Zhou K, Zhou C, Huang Z-H, Kang F, Lv R (2017) Enhanced sodium ion storage of nitrogen-rich hard carbon by NaCl intercalation. Carbon 122:680–686CrossRefGoogle Scholar
  12. 12.
    Yang L, Wang W, Hu M, Shao J, Lv R (2017) Ultrahigh rate binder-free Na3V2(PO4)3/carbon cathode for sodium ion battery. J Energy Chem.  https://doi.org/10.1016/j.jechem.2017.08.021 Google Scholar
  13. 13.
    Aravindan V, Gnanaraj J, Lee YS, Madhavi S (2014) Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem Rev 114:11619–11635CrossRefGoogle Scholar
  14. 14.
    Que LF, Yu FD, He KW, Wang ZB, Gu DM (2017) Robust and conductive Na2Ti2O5−x nanowire arrays for high-performance flexible sodium ion capacitor. Chem Mater 29:9133–9141CrossRefGoogle Scholar
  15. 15.
    Choi NS, Chen Z, Freunberger SA, Ji X, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51:9994–10024CrossRefGoogle Scholar
  16. 16.
    Song H, Li N, Cui H, Wang C (2014) Enhanced storage capability and kinetic processes by pores- and hetero-atoms- riched carbon nanobubbles for lithium-ion and sodium ion batteries anodes. Nano Energy 4:81–87CrossRefGoogle Scholar
  17. 17.
    Wang X, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, Okubo M, Yamada A (2015) Pseudocapacitance of MXene nanosheets for high-power Sodium ion hybrid capacitors. Nat Commun 6:6544CrossRefGoogle Scholar
  18. 18.
    Wang H, Zhu C, Chao D, Yan Q, Fan H (2017) Nonaqueous hybrid lithium-ion and sodium ion capacitors. Adv Mater 29:1702093CrossRefGoogle Scholar
  19. 19.
    Zhou J, Liu X, Cai W, Zhu Y, Liang J, Zhang K, Lan Y, Jiang Z, Wang G, Qian Y (2017) Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium ion batteries. Adv Mater 29:1700214CrossRefGoogle Scholar
  20. 20.
    Xie X, Su D, Chen S, Zhang J, Dou S, Wang G (2014) SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for Sodium ion batteries. Chem Asian J 9:1611–1617CrossRefGoogle Scholar
  21. 21.
    Liu X, Wang H, Cui Y, Xu X, Zhang H, Lu G, Ji Shi, Liu W, Chen S, Wang X (2018) High-energy sodium ion capacitor assembled by hierarchical porous carbon electrodes derived from enteromorpha. J Mater Sci 53:6763–6773.  https://doi.org/10.1007/s10853-017-1982-9 CrossRefGoogle Scholar
  22. 22.
    Xu D, Chao D, Wang H, Gong Y, Wang R, He B, Hu X, Fan H (2018) Flexible quasi-solid-state sodium ion capacitors developed using 2D metal-organic-framework array as reactor. Adv Energy Mater 8:1702769CrossRefGoogle Scholar
  23. 23.
    Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan H (2011) Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater 23:2076–2081CrossRefGoogle Scholar
  24. 24.
    Jiang H, Lee PS, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6:41–53CrossRefGoogle Scholar
  25. 25.
    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211CrossRefGoogle Scholar
  26. 26.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  27. 27.
    Chao D, Liang P, Chen Z, Bai L, Shen H, Liu X, Xia X, Zhao Y, Savilov SV, Lin J, Shen Z (2016) Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10:10211–10219CrossRefGoogle Scholar
  28. 28.
    Zhou T, Pang W, Zhang C, Yang J, Chen Z, Liu H, Guo Z (2014) Enhanced sodium ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8:8323–8333CrossRefGoogle Scholar
  29. 29.
    Wu L, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y (2013) A Sn–SnS–C nanocomposite as anode host materials for Na-ion batteries. J Mater Chem A 1:7181–7184CrossRefGoogle Scholar
  30. 30.
    Yan Y, Yin YX, Guo YG, Wan LJ (2014) A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for Sodium ion batteries. Adv Energy Mater 4:1301584CrossRefGoogle Scholar
  31. 31.
    Voiry D, Yang J, Kupferberg J, Fullon R, Lee C, Jeong HY, Shin HS, Chhowalla M (2016) High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353:1413–1416CrossRefGoogle Scholar
  32. 32.
    Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541CrossRefGoogle Scholar
  33. 33.
    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614CrossRefGoogle Scholar
  34. 34.
    Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH (2012) Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J Mater Chem 22:767–784CrossRefGoogle Scholar
  35. 35.
    Shen L, Lv H, Chen S, Kopold P, Aken P, Wu X, Maier J, Yu Y (2017) Carbon nanowires: peapod-like Li3VO4/N-doped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors. Adv Mater 29:1700142CrossRefGoogle Scholar
  36. 36.
    Zhao Y, Wang Z, Yuan R, Lin Y, Yan J, Zhang J, Lu Z, Luo D, Pietrasik J, Bockstaller MR, Matyjaszewski K (2018) ZnO/carbon hybrids derived from polymer nanocomposite precursor materials for pseudocapacitor electrodes with high cycling stability. Polymer 137:370–377CrossRefGoogle Scholar
  37. 37.
    Yu X, Pei C, Chen W, Feng L (2018) 2 dimensional WS2 tailored nitrogen-doped carbon nanofiber as a highly pseudocapacitive anode material for lithium-ion battery. Electrochim Acta 272:119–126CrossRefGoogle Scholar
  38. 38.
    Zhang L, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRefGoogle Scholar
  39. 39.
    Li W, Hu S, Luo X, Li Z, Sun X, Li M, Liu F, Yu Y (2017) Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for Sodium ion battery. Adv Mater 29:1605820CrossRefGoogle Scholar
  40. 40.
    Wang S, Xia L, Yu L, Zhang L, Wang H, Lou XW (2016) Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for Sodium ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater 6:1502217CrossRefGoogle Scholar
  41. 41.
    Tang K, Fu L, White Robin J, Yu L, Titirici MM, Antonietti M, Maier J (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877CrossRefGoogle Scholar
  42. 42.
    Jiang Q, Zhang Z, Yin S, Guo Z, Wang S, Feng C (2016) Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium ion batteries. Appl Surf Sci 379:73–82CrossRefGoogle Scholar
  43. 43.
    Wang Z, Qie L, Yuan L, Zhang W, Hu X, Huang Y (2013) Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium ion storage with excellent performance. Carbon 55:328–334CrossRefGoogle Scholar
  44. 44.
    Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050CrossRefGoogle Scholar
  45. 45.
    Xu J, Wang M, Wickramaratne NP, Jaroniec M, Dou S, Dai L (2015) High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv Mater 27:2042–2048CrossRefGoogle Scholar
  46. 46.
    Zhao X, Li Y, Wang J, Ouyang Z, Li J, Wei G, Su Z (2014) Interactive oxidation-reduction reaction for the in situ synthesis of graphene-phenol formaldehyde composites with enhanced properties. ACS Appl Mater Interfaces 6:4254–4263CrossRefGoogle Scholar
  47. 47.
    Yin L, Chen D, Cui X, Ge L, Yang J, Yu L, Zhang B, Zhang R, Shao G (2014) Normal-pressure microwave rapid synthesis of hierarchical SnO2@rGO nanostructures with superhigh surface areas as high-quality gas-sensing and electrochemical active materials. Nanoscale 6:13690–13700CrossRefGoogle Scholar
  48. 48.
    Ding J, Wang H, Li Z, Kohandehghan A, Cui K, Xu Z, Zahiri B, Tan X, Lotfabad EM, Olsen BC, Mitlin D (2013) Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7:11004–11015CrossRefGoogle Scholar
  49. 49.
    Prabakar SJR, Jeong J, Pyo M (2015) Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries. Electrochim Acta 161:23–31CrossRefGoogle Scholar
  50. 50.
    Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763CrossRefGoogle Scholar
  51. 51.
    Yang T, Qian T, Wang M, Shen X, Xu N, Sun Z, Yan C (2016) A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv Mater 28:539–545CrossRefGoogle Scholar
  52. 52.
    Zhang J, Wang DW, Lv W, Zhang S, Liang Q, Zheng D, Kang F, Yang QH (2017) Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ Sci 10:370–376CrossRefGoogle Scholar
  53. 53.
    Chen Z, Augustyn V, Jia X, Xiao Q, Dunn B, Lu Y (2012) High-performance sodium ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6:4319–4327CrossRefGoogle Scholar
  54. 54.
    Ding R, Qi L, Wang H (2013) An investigation of spinel NiCo2O4 as anode for Na-ion capacitors. Electrochim Acta 114:726–735CrossRefGoogle Scholar
  55. 55.
    Wang H, Mitlin D, Ding J, Li Z, Cui K (2016) Excellent energy-power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. J Mater Chem A 4:5149–5158CrossRefGoogle Scholar
  56. 56.
    Yin J, Qi L, Wang H (2012) Sodium titanate nanotubes as negative electrode materials for sodium ion capacitors. ACS Appl Mater Interfaces 4:2762–2768CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceZhongyuan University of TechnologyZhengzhouPeople’s Republic of China
  2. 2.College of Physics Science and TechnologyYangzhou UniversityYangzhouPeople’s Republic of China
  3. 3.Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State PhysicsChinese Academy of SciencesHefeiPeople’s Republic of China

Personalised recommendations