Advertisement

Journal of Materials Science

, Volume 54, Issue 5, pp 3805–3816 | Cite as

Synthesis of nitrogen-rich hollow microspheres for CO2 adsorption

  • Fengqin Yin
  • Zhejia Wu
  • Xianyong Luo
  • Linzhou Zhuang
  • Haozhen Ou
  • Shuixia Chen
Chemical routes to materials
  • 72 Downloads

Abstract

The nitrogen-rich hollow microspheres (MFM) with different pore sizes have been synthesized by using melamine, m-phenylenediamine and paraformaldehyde as monomer, different particle sizes of SiO2 microsphere as template, and water as solvent. The specific surface area, pore volume and average pore size of the synthesized MFM were 183.67 m2/g, 0.91 cm3/g and 19.8 nm, respectively. After loading polyethyleneimine (PEI), its CO2 adsorption capacity could reach 2.68 mmol/g at 60 °C, with the corresponding utilization efficiency of amino as high as 40.66%. The kinetic simulation of pseudo-first-order, pseudo-second-order and Avrami kinetic model showed that the Avrami model could better describe the adsorption process of CO2, indicating both physical adsorption and chemical adsorption in the whole process. The diffusion mechanism was simulated by using the Boyd model, the intermolecular diffusion model and the intraparticle diffusion model, showing that the porous structure of MFM was beneficial to the diffusion of CO2 in the particles. After 5 cycles, 10 cycles, 15 cycles and even after 20 cycles of adsorption–desorption, the adsorption capacity of MFM-PEI at 30 °C was nearly the same as the capacity of the fresh one, indicating the regeneration stability of the adsorbent, with great advantages in practical production.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Grant No. 51473187) and Science and Technology Project of Guangdong Province (2016A010103013).

References

  1. 1.
    Nugent P, Belmabkhout Y, Burd SD et al. (2013) Nature 495: 80–84. http://www.nature.com/nature/journal/v495/n7439/abs/nature11893.html#supplementary-information
  2. 2.
    Francisco-Marquez M, Galano A (2016) J Phys Chem C 120:24476–24481.  https://doi.org/10.1021/acs.jpcc.6b08641 CrossRefGoogle Scholar
  3. 3.
    Al-Marri MJ, Khader MM, Tawfik M, Qi G, Giannelis EP (2015) Langmuir 31:3569–3576.  https://doi.org/10.1021/acs.langmuir.5b00189 CrossRefGoogle Scholar
  4. 4.
    Nandi S, De Luna P, Daff TD et al (2015) Sci Adv 1(11):e1500421.  https://doi.org/10.1126/sciadv.1500421 CrossRefGoogle Scholar
  5. 5.
    Datta SJ, Khumnoon C, Lee ZH et al (2015) Science 350:302–306.  https://doi.org/10.1126/science.aab1680 CrossRefGoogle Scholar
  6. 6.
    Pham VH, Dickerson JH (2014) ACS Appl Mater Interfaces 6:14181–14188.  https://doi.org/10.1021/am503503m CrossRefGoogle Scholar
  7. 7.
    Yang Y, Deng Y, Tong Z, Wang C (2014) J Mater Chem A 2:9994–9999.  https://doi.org/10.1039/C4TA00939H CrossRefGoogle Scholar
  8. 8.
    Lastoskie C (2010) Science 330:595–596.  https://doi.org/10.1126/science.1198066 CrossRefGoogle Scholar
  9. 9.
    Siegelman RL, McDonald TM, Gonzalez MI et al (2017) J Am Chem Soc 139:10526–10538.  https://doi.org/10.1021/jacs.7b05858 CrossRefGoogle Scholar
  10. 10.
    Boot-Handford ME, Abanades JC, Anthony EJ et al (2014) Energy Environ Sci 7:130–189.  https://doi.org/10.1039/C3EE42350F CrossRefGoogle Scholar
  11. 11.
    Yang S, Zhan L, Xu X, Wang Y, Ling L, Feng X (2013) Adv Mater 25:2130–2134.  https://doi.org/10.1002/adma.201204427 CrossRefGoogle Scholar
  12. 12.
    Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G (2013) Front Environ Sci Eng 7:326–340.  https://doi.org/10.1007/s11783-013-0510-7 CrossRefGoogle Scholar
  13. 13.
    Zhang W, Liu H, Sun C, Drage TC, Snape CE (2014) Chem Eng Sci 116:306–316.  https://doi.org/10.1016/j.ces.2014.05.018 CrossRefGoogle Scholar
  14. 14.
    Zhang W, Liu H, Sun Y, Cakstins J, Sun C, Snape CE (2016) Appl Energy 168:394–405.  https://doi.org/10.1016/j.apenergy.2016.01.049 CrossRefGoogle Scholar
  15. 15.
    Dutcher B, Fan M, Russell AG (2015) ACS Appl Mater Interfaces 7:2137–2148.  https://doi.org/10.1021/am507465f CrossRefGoogle Scholar
  16. 16.
    Wang H, Li B, Wu H et al (2015) J Am Chem Soc 137:9963–9970.  https://doi.org/10.1021/jacs.5b05644 CrossRefGoogle Scholar
  17. 17.
    Ye Y, Xiong S, Wu X et al (2015) Inorganic Chem 55:292–299.  https://doi.org/10.1021/acs.inorgchem.5b02316 CrossRefGoogle Scholar
  18. 18.
    Evans KA, Kennedy Z, Arey B et al (2018) ACS Appl Mater Interfaces 10:15112–15121.  https://doi.org/10.1021/acsami.7b17565 CrossRefGoogle Scholar
  19. 19.
    Tan MX, Zhang Y, Ying JY (2013) Chemsuschem 6:1186–1190.  https://doi.org/10.1002/cssc.201300107 CrossRefGoogle Scholar
  20. 20.
    Wilke A, Weber J (2011) J Mater Chem 21:5226–5229.  https://doi.org/10.1039/C1JM10171D CrossRefGoogle Scholar
  21. 21.
    Yang D, Liu P, Zhang N et al (2014) ChemCatChem 6:3434–3439.  https://doi.org/10.1002/cctc.201402628 CrossRefGoogle Scholar
  22. 22.
    Hu X-M, Chen Q, Zhao Y-C, Laursen BW, Han B-H (2014) J Mater Chem A 2:14201–14208.  https://doi.org/10.1039/C4TA02073A CrossRefGoogle Scholar
  23. 23.
    Hug S, Mesch M, Oh H et al (2014) J Mater Chem A 2:5928–5936.  https://doi.org/10.1039/c3ta15417c CrossRefGoogle Scholar
  24. 24.
    Zhao Y, Yao KX, Teng B, Zhang T, Han Y (2013) Energy Environ Sci 6:3684–3692.  https://doi.org/10.1039/C3EE42548G CrossRefGoogle Scholar
  25. 25.
    Wei J, Zhou D, Sun Z, Deng Y, Xia Y, Zhao D (2013) Nanoscale Res Lett 13:163.  https://doi.org/10.1186/s11671-018-2577-3 Google Scholar
  26. 26.
    Tian W, Zhang H, Sun H et al (2016) Adv Funct Mater 26:8651–8661.  https://doi.org/10.1002/adfm.201603937 CrossRefGoogle Scholar
  27. 27.
    Gomes R, Bhanja P, Bhaumik A (2015) Chem Commun 51:10050–10053.  https://doi.org/10.1039/C5CC02147B CrossRefGoogle Scholar
  28. 28.
    Lee JH, Lee HJ, Lim SY, Kim BG, Choi JW (2015) J Am Chem Soc 137:7210–7216.  https://doi.org/10.1021/jacs.5b03579 CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Liu X, Yao KX, Zhao L, Han Y (2012) Chem Mater 24:4725–4734.  https://doi.org/10.1021/cm303072n CrossRefGoogle Scholar
  30. 30.
    Sevilla M, Valle-Vigón P, Fuertes AB (2011) Adv Funct Mater 21:2781–2787.  https://doi.org/10.1002/adfm.201100291 CrossRefGoogle Scholar
  31. 31.
    Wang J, Senkovska I, Oschatz M et al (2013) J Mater Chem A 1:10951–10961.  https://doi.org/10.1039/C3TA11995E CrossRefGoogle Scholar
  32. 32.
    Li P-Z, Zhao Y (2013) Chem Asian J 8:1680–1691.  https://doi.org/10.1002/asia.201300121 CrossRefGoogle Scholar
  33. 33.
    Kailasam K, Jun Y-S, Katekomol P, Epping JD, Hong WH, Thomas A (2010) Chem Mater 22:428–434.  https://doi.org/10.1021/cm9029903 CrossRefGoogle Scholar
  34. 34.
    Luo Y, Li B, Liang L, Tan B (2011) Chem Commun 47:7704–7706.  https://doi.org/10.1039/C1CC11466B CrossRefGoogle Scholar
  35. 35.
    Hou X, Zhuang L, Ma B, Chen S, He H, Yin F (2018) Chem Eng Sci 181:315–325.  https://doi.org/10.1016/j.ces.2018.02.015 CrossRefGoogle Scholar
  36. 36.
    He H, Zhuang L, Chen S, Liu H, Li Q (2016) Green Chem 18:5859–5869.  https://doi.org/10.1039/C6GC01416J CrossRefGoogle Scholar
  37. 37.
    Mishra PK, Kumar R, Rai PK (2018) Nanoscale 10:7257–7269.  https://doi.org/10.1039/C7NR09563E CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PCFM Lab, School of ChemistrySun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Materials Science InstituteSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  3. 3.School of Chemical EngineeringUniversity of QueenslandSt LuciaAustralia

Personalised recommendations