Advertisement

Journal of Materials Science

, Volume 54, Issue 5, pp 4024–4037 | Cite as

Magnetic hollow mesoporous carbon composites with impedance matching for highly effective microwave absorption

  • Guozhu Shen
  • Junzhao Ren
  • Bin Zhao
  • Buqing Mei
  • Hongyan Wu
  • Xumin Fang
  • Yewen Xu
Electronic materials
  • 34 Downloads

Abstract

Lightweight hollow mesoporous carbon spheres (HMCSs) with large air/carbon interface in the mesoporous shell and interior void have been successfully synthesized via a ‘polymerization–pyrolysis–etching’ route. The complex permittivity of the HMCSs can be easily adjusted by carbonization temperature in the frequency range of 2–18 GHz, which is in favor of designing absorbers in different frequency range. The minimum reflection loss value of − 26.4 dB at 6.7 GHz with a thickness of 5.0 mm and the maximum effective absorption bandwidth (less than − 10 dB) of 5.5 GHz can be gained for the HC-700/paraffin composite with only 10 wt% HMCSs and a thickness of 2.5 mm. To enhance the magnetic loss and improve the impedance matching of the HMCSs, electroless plating methods are employed to deposit Ni and Fe nanoparticles on the HMCSs. Benefiting from the dielectric loss, magnetic loss and impedance characteristic, the new lightweight Fe/HMCSs composite with 40 wt% HC–Fe shows superior microwave absorption properties. The stronger reflection loss can be obtained at all designed thicknesses, and the peak value of reflection loss is less than − 20 dB at each thickness of greater than 1.2 mm. The minimum reflection loss reaches − 49.7 dB at 13.0 GHz, and the effective absorption bandwidth is 4.0 GHz with a thickness of 1.6 mm. This research is providing a new insight in the preparation and design of lightweight microwave absorption materials.

Notes

Acknowledgements

We appreciate the financial support from Open Project of Science and Technology on Near-Surface Detection Laboratory (TCGZ2017A011), the Natural Science Foundation-Outstanding Youth Foundation of Jiangsu Province of China (BK20160091) and the Six Talent Peaks Project of Jiangsu Province of China (GDZB-046).

Compliance with ethical standards

Conflict of interest

The authors declare there is no any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Supplementary material

10853_2018_3100_MOESM1_ESM.doc (9.1 mb)
Supplementary material 1 (DOC 9365 kb)

References

  1. 1.
    Xu Z, Huang YA, Yang Y, Shen JY, Tang T, Huang RS (2010) Dispersion of iron nano-particles on expanded graphite for the shielding of electromagnetic radiation. J Magn Magn Mater 322:3084–3087CrossRefGoogle Scholar
  2. 2.
    Joseph N, Singh SK, Sirugudu RK, Murthy VRK, Ananthakumar S, Sebastian MT (2013) Effect of Silver incorporation into PVDF-barium titanate composites for EMI shielding application. Mater Res Bull 48:1681–1687CrossRefGoogle Scholar
  3. 3.
    Joon S, Kumar R, Singh AP, Shukla R, Dhawan SK (2015) Fabrication and microwave shielding properties of free standing polyaniline-carbon fiber thin sheets. Mater Chem Phys 160:87–95CrossRefGoogle Scholar
  4. 4.
    Fu JY, Yang W, Hou LQ, Chen Z, Qiu T, Yang HT, Li YF (2017) Enhanced electromagnetic microwave absorption performance of lightweight bowl-like carbon nanoparticles. Ind Eng Chem Res 56:11460–11466CrossRefGoogle Scholar
  5. 5.
    Zhou C, Geng S, Xu XW, Wang TH, Zhang LQ, Tian XJ, Yang F, Yang HT, Li YF (2016) Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108:234–241CrossRefGoogle Scholar
  6. 6.
    Qiang R, Du YC, Wang Y, Wang N, Tian CH, Ma J, Xu P, Han XJ (2016) Rational design of yolk–shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 98:599–606CrossRefGoogle Scholar
  7. 7.
    Qin F, Brosseau C (2012) A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 111:061301CrossRefGoogle Scholar
  8. 8.
    Zhang YN, Liu W, Quan B, Ji GB, Ma JN, Li DR, Meng W (2017) Achieving the interfacial polarization on C/Fe3C heterojunction structures for highly efficient lightweight microwave absorption. J Colloid Interface Sci 508:462–468CrossRefGoogle Scholar
  9. 9.
    Li YX, Liu RG, Pang XY, Zhao XN, Zhang YH, Qin GW, Zhang XF (2018) Fe@C nanocapsules with substitutional sulfur heteroatoms in graphitic shells for improving microwave absorption at gigahertz frequencies. Carbon 126:372–381CrossRefGoogle Scholar
  10. 10.
    Wu T, Liu Y, Zeng X, Cui TT, Zhao YT, Li YN, Tong GX (2016) Facile hydrothermal synthesis of Fe3O4/C core–shell nanorings for efficient low-frequency microwave absorption. ACS Appl Mater Interfaces 8:7370–7380CrossRefGoogle Scholar
  11. 11.
    Liu DW, Qiang R, Du YC, Wang Y, Tian CH, Han XJ (2018) Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J Colloid Interface Sci 514:10–20CrossRefGoogle Scholar
  12. 12.
    Li YX, Wang JY, Liu RG, Zhao XN, Wang XJ, Zhang XF, Qin GW (2017) Dependence of gigaherze microwave absorption on the mass fraction of Co@C nanocapsules in composites. J Alloys Compd 724:1023–1029CrossRefGoogle Scholar
  13. 13.
    Wan YZ, Xiao J, Li CZ, Xiong GY, Guo RS, Li LL, Han M, Luo HL (2016) Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies. J Magn Magn Mater 399:252–259CrossRefGoogle Scholar
  14. 14.
    Shah A, Ding A, Wang YH, Zhang L, Wang DX, Muhammad J, Huang H, Duan YP, Dong XL, Zhang ZD (2016) Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of Fe nanoparticles in epoxy resin composites. Carbon 96:987–997CrossRefGoogle Scholar
  15. 15.
    Salimkhani H, Palmeh P, Khiabani AB, Hashemi E, Matinpour S, Slimkhani H, Asl MS (2016) Eletrophoretic deposition of spherical carbonyl iron particles on carbon fibers as a microwave absorbent composite. Surf Interfaces 5:1–7CrossRefGoogle Scholar
  16. 16.
    Che RC, Peng LM, Duan XF, Qin C, Liang XL (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16:401–405CrossRefGoogle Scholar
  17. 17.
    Lin L, Xing HL, Shu RW, Wang L, Ji XL, Tan DX, Gan Y (2015) Preparation and microwave absorption properties of multi-walled carbon nantubes decorated with Ni-doped SnO2 nancrystals. RSC Adv 5:94539–94550CrossRefGoogle Scholar
  18. 18.
    Li N, Huang GW, Li YQ, Xiao HM, Feng QP, Hu N, Fu SY (2017) Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl Mater Interfaces 9:2973–2983CrossRefGoogle Scholar
  19. 19.
    Yang QX, Liu L, Hui D, Chipara M (2016) Microstructure, electrical conductivity and microwave absorption properties of γ-FeNi decorated carbon nanotube composites. Compos Part B 87:256–262CrossRefGoogle Scholar
  20. 20.
    Cao MS, Yang J, Song WL, Zhang DQ, Wen B, Jin HB, Hou ZL, Yuan J (2012) Ferroferric oxide/multiwalled carbon nanotube vs. polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl Mater Interfaces 4:6949–6956CrossRefGoogle Scholar
  21. 21.
    Liu ZF, Xing HL, Liu Y, Wang H, Jia HX, Ji XL (2017) Hydrothermally synthesized Zn ferrite/multi-walled carbon nanotubes composite with enhanced electromagnetic-wave absorption performance. J Alloys Compd 731:745–752CrossRefGoogle Scholar
  22. 22.
    Liu X, Wang LS, Ma YT, Qiu YL, Xie QS, Chen YZ, Peng DL (2018) Facile synthesis and microwave absorption properties of yolk–shell ZnO-Ni-C/RGO composite materials. Chem Eng J 333:92–100CrossRefGoogle Scholar
  23. 23.
    Zong M, Huang Y, Zhang N, Wu HW (2015) Influence of (RGO)/(ferrite) ratios and graphene reduction degree on microwave absorption properties of graphene composites. J Alloys Compd 644:491–501CrossRefGoogle Scholar
  24. 24.
    Zhang XJ, Wang GS, Cao WQ, Wei YZ, Liang JF, Guo L, Cao MS (2014) Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl Mater Interfaces 6:7471–7478CrossRefGoogle Scholar
  25. 25.
    Shen GZ, Xu YW, Liu B, Du P, Li Y, Zhu J, Zhang D (2016) Enhanced microwave absorption properties of N-doped ordered mesoporous carbon plated with metal Co. J Alloys Compd 680:553–559CrossRefGoogle Scholar
  26. 26.
    Wu HJ, Wang LD, Wang YM, Guo SL, Shen ZY (2012) Enhanced microwave performance of highly ordered mesoporous carbon coated by Ni2O3 nanoparticles. J Alloys Compd 525:82–85CrossRefGoogle Scholar
  27. 27.
    Li GX, Guo YX, Sun X, Wang T, Zhou JH, He JP (2012) Synthesis and microwave absorbing properties of FeNi alloy incorporated ordered mesoporous carbon–silica nanocomposite. J Phys Chem Solids 73:1268–1273CrossRefGoogle Scholar
  28. 28.
    Shi GM, Zhang B, Wang XL, Fu YH (2016) Enhance microwave absorption properties of core double-shell type Fe@C@BaTiO3 nanocapsules. J Alloys Compd 655:130–137CrossRefGoogle Scholar
  29. 29.
    Wang C, Xu TT, Wang CA (2016) Microwave absorption properties of C/(C@CoFe) hierarchical core–shell spheres synthesized by using colloidal spheres as templates. Ceram Int 42:9178–9182CrossRefGoogle Scholar
  30. 30.
    Khani O, Shoushtari MZ, Jazirehpour M, Shams MH (2016) Effect of carbon shell thickness on the microwave absorption of magnetite-carbon core–shell nanoparticles. Ceram Int 42:14548–14556CrossRefGoogle Scholar
  31. 31.
    Zhao X, Li W, Zhang SS, Liu LH, Liu SX (2015) Facile fabrication of hollow and honeycomb-like carbon spheres from liquefied larch sawdust via ultrasonic spray pyrolysis. Mater Lett 157:135–138CrossRefGoogle Scholar
  32. 32.
    Ma FW, Zhao H, Sun LP, Li Q, Huo LH, Xia T, Gao S (2012) A facile route for nitrogen-doped hollow graphitic carbon sphere with superior performance in supercapacitors. J Mater Chem 22:13464–13468CrossRefGoogle Scholar
  33. 33.
    Fang Y, Gu D, Zou Y, Wu ZX, Li FY, Che RC, Deng YH, Tu B, Zhao DY (2010) A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem Int Ed 49:7987–7991CrossRefGoogle Scholar
  34. 34.
    Meng Y, Gu D, Zhang FQ, Shi YF, Cheng L, Feng D, Wu ZX, Chen ZX, Wan Y, Stein A, Zhao DY (2006) A family of highly ordered mesoporous polymer resin and carbon structures from organic–organic self-assembly. Chem Mater 18:4447–4464CrossRefGoogle Scholar
  35. 35.
    Tanaka S, Nakao H, Mukai T, Katayama Y, Miyake Y (2012) An experimental investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using monodisperse carbon spheres with microporous structure. J Phys Chem C 116:26791–26799CrossRefGoogle Scholar
  36. 36.
    Han Y, Dong XT, Zhang C, Liu SX (2012) Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor materials. J Power Sources 211:92–96CrossRefGoogle Scholar
  37. 37.
    Xu HL, Yin XW, Zhu M, Han MK, Hou ZX, Li XL, Zhang LT, Cheng LF (2017) Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl Mater Interfaces 9:6332–6341CrossRefGoogle Scholar
  38. 38.
    Cheng Y, Li ZY, Li Y, Dai SS, Ji GB, Zhao HQ, Cao JM, Du YW (2018) Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon 127:643–652CrossRefGoogle Scholar
  39. 39.
    Du YC, Liu T, Yu B, Gao HB, Xu P, Wang JY, Wang XH, Han XJ (2012) The electromagnetic properties and microwave absorption of mesoporous carbon. Mater Chem Phys 135:884–891CrossRefGoogle Scholar
  40. 40.
    Huang YX, Wan Y, Li ZM, Yang Z, Shen CH, He CC (2014) Effect of pore morphology on the dielectric properties of porous carbon for microwave absorption application. J Phys Chem C 118:26027–26032CrossRefGoogle Scholar
  41. 41.
    Zhang HW, Noonan O, Huang XD, Yang YN, Xu C, Zhou L, Yu CZ (2016) Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano 10:4579–4586CrossRefGoogle Scholar
  42. 42.
    Park KY, Han JH, Lee SB, Yi JW (2011) Microwave absorbing hybrid composites containing Ni-Fe coated carbon nanofibers prepared by electroless plating. Compos Part A 42:573–578CrossRefGoogle Scholar
  43. 43.
    Zhang CW, Wang F (2005) Structure and coordination investigation of iron-ion tinting principle in ferreous glass. J Wuhan Univ Technol Mater Sci Ed 20:8–11Google Scholar
  44. 44.
    Liu X, Guo HZ, Xie QS, Luo Q, Wang LS, Peng DL (2015) Enhanced microwave absorption properties in GHz range of Fe3O4/C composite materials. J Alloys Compd 649:537–543CrossRefGoogle Scholar
  45. 45.
    Wu ND, Liu XG, Zhao CY, Cui CY, Xia AL (2016) Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nancapsules. J Alloys Compd 656:628–634CrossRefGoogle Scholar
  46. 46.
    Ding D, Wang Y, Li XD, Qiang R, Xu P, Chu WL, Han XJ, Du YC (2017) Rational design of core–shell Co@C microspheres for high-performance microwave absorption. Carbon 111:722–732CrossRefGoogle Scholar
  47. 47.
    Wang JC, Zhou H, Zhuang JD, Liu Q (2015) Magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers. Phys Chem Chem Phys 17:3802–3812CrossRefGoogle Scholar
  48. 48.
    Liu C, Yuan Y, Jiang JT, Gong YX, Zhen L (2015) Microwave absorption properties of FeSi flaky particles prepared via a ball-milling process. J Magn Magn Mater 395:152–158CrossRefGoogle Scholar
  49. 49.
    Aharoni A (1991) Exchange resonance modes in a ferromagnetic sphere. J Appl Phys 69:7762–7764CrossRefGoogle Scholar
  50. 50.
    Zong M, Huang Y, Zhao Y, Sun X, Qu CH, Luo DD, Zheng JB (2013) Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO-Fe3O4 composites. RSC Adv 3:23638–23648CrossRefGoogle Scholar
  51. 51.
    Shen GZ, Mei BQ, Wu HY, Wei HY, Fang XM, Xu YW (2017) Microwave electromagnetic and absorption properties of N-doped ordered mesoporous carbon decorated with ferrite nanoparticles. J Phys Chem C 121:3846–3853CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Optoelectronic EngineeringNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Science and Technology on Near-Surface Detection LaboratoryWuxiChina

Personalised recommendations