Advertisement

Journal of Materials Science

, Volume 54, Issue 4, pp 3252–3261 | Cite as

Improvement of thermoelectric properties of Ca0.9Gd0.1MnO3 by powder engineering through K2CO3 additions

  • N. M. FerreiraEmail author
  • M. C. Ferro
  • A. R. Sarabando
  • A. Ribeiro
  • A. Davarpanah
  • V. Amaral
  • M. A. Madre
  • A. V. Kovalevsky
  • M. A. Torres
  • F. M. Costa
  • A. Sotelo
Energy materials
  • 147 Downloads

Abstract

Oxide materials based on calcium manganite show clear prospects as thermoelectrics, provided by their stability at high temperatures and inherent flexibility in tuning the relevant electrical and thermal transport properties. Donor-doped CaMnO3 is an n-type semiconductor with a perovskite structure and relatively high thermoelectric performance. In this work, the precursor powders have been modified through potassium carbonate additions to produce Ca0.9Gd0.1MnO3 pellets without the usual delamination problems occurring during the compaction process. In order to demonstrate the relevant effects, several samples with different amounts of potassium carbonate (0–15 wt%) have been prepared. The results showed that potassium additions significantly facilitate the compaction procedure, while also improving the thermoelectric performances. The results also highlight the importance of porosity control for improving ZT, by decreasing the thermal conductivity without reduction of the electrical performance. The highest ZT values were observed for the samples processed at 15 wt% of potassium carbonate addition, exhibiting an improvement at least 30% at 800 °C when compared to the pure samples.

Notes

Acknowledgements

N.M. Ferreira, A.V. Kovalevsky and FM Costa acknowledge the support of i3 N (UID/CTM/50025/2013) and CICECO-Aveiro Institute of Materials (UID/CTM/50011/2013), financed by FCT/MEC and FEDER under the PT2020 Partnership Agreement. The support from FCT (Portugal) grant SFRH/BPD/111460/2015, and the funding that allowed a scientific mission to Zaragoza to perform the present work, is also acknowledged. A. Sotelo, M. A. Madre, J. C. Diez, and M. A. Torres acknowledge the Gobierno de Aragon (Grupo de Investigacion T 54-17 R), and the MINECO-FEDER (MAT2017-82183-C3-1-R) for funding.

References

  1. 1.
    Kabir R, Tian R (2015) Role of Bi doping in thermoelectric properties of CaMnO3. J Alloy Compd 628:347–351CrossRefGoogle Scholar
  2. 2.
    Zhang FP, Lu QM, Zhang X, Zhang JX (2011) First principle investigation of electronic structure of CaMnO3 thermoelectric compound oxide. J Alloy Compd 509:542–545.  https://doi.org/10.1016/j.jallcom.2010.09.102 CrossRefGoogle Scholar
  3. 3.
    Wang H, Su W, Liu J, Wang C (2016) Recent development of n-type perovskite thermoelectrics. J Materiom 2:225–236.  https://doi.org/10.1016/j.jmat.2016.06.005 CrossRefGoogle Scholar
  4. 4.
    Flahaut D, Mihara T (2006) Thermoelectrical properties of A-site substituted Ca1-xRexMnO3 system. J Appl Phys 100:84911–84914CrossRefGoogle Scholar
  5. 5.
    Wang Y, Sui Y (2009) High temperature thermoelectric response of electron-doped CaMnO3. Chem Mater 21:4653–4660CrossRefGoogle Scholar
  6. 6.
    Sotelo A, Torres M, Madre M, Diez J (2017) Effect of synthesis process on the densification, microstructure, and electrical properties of Ca0.9Yb0.1MnO3 ceramics. Int J Appl Ceram Technol 14:1190–1196.  https://doi.org/10.1111/ijac.12711 CrossRefGoogle Scholar
  7. 7.
    Milak PC, Minatto FD, De Noni A Jr, Montedo ORK (2015) Wear performance of alumina-based ceramics—a review of the influence of microstructure on erosive wear. Cerâmica 61:88–103.  https://doi.org/10.1590/0366-69132015613571871 CrossRefGoogle Scholar
  8. 8.
    Mouyane M, Itaalit B, Bernard J, Houivet D, Noudem JG (2014) Flash combustion synthesis of electron doped-CaMnO3 thermoelectric oxides. Powder Technol 264:71–77.  https://doi.org/10.1016/j.powtec.2014.05.022 CrossRefGoogle Scholar
  9. 9.
    Taktaka R, Bakloutib S, Bouaziza J (2011) Effect of binders on microstructural and mechanical properties of sintered alumina. Mater Charact 62:912–916CrossRefGoogle Scholar
  10. 10.
    Melo Jorge ME, Correia dos Santos A, Nunes MR (2001) Effects of synthesis method on stoichiometry, structure and electrical conductivity of CaMnO3. Int J Inorg Mater 3:915–921CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Sotelo A, Costa FM, Ferreira NM, Kovalevsky A, Ferro MC, Amaral VS, Amaral JS, Rasekh Sh, Torres MA, Madre MA, Diez JC (2016) Tailoring Ca3Co4O9 microstructure and performances using a transient liquid phase sintering additive. J Eur Ceram Soc 36:1025–1032.  https://doi.org/10.1016/j.jeurceramsoc.2015.11.024 CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Li C, Chen Q, Yan Y, Li Y, Zhao Y (2018) High-temperature thermoelectric properties of Ca0.92La0.04RE0.04MnO3 (RE = Sm, Dy and Yb) prepared by coprecipitation. Mater Res Express 5:25510CrossRefGoogle Scholar
  15. 15.
    Reimann T, Topfer J (2017) Thermoelectric properties of Gd/W double substituted calcium manganite. J Alloys Compd 699:788–795CrossRefGoogle Scholar
  16. 16.
    Rosić M, Kljajević LJ, Jordanov D, Stoiljković M, Kusigerski V, Spasojević V, Matović B (2015) Effects of sintering on the structural, microstructural and magnetic properties of nanoparticle manganite Ca1-xGdxMnO3 (x = 0.05; 0.1; 0.15; 0.2). Ceram Int 41:14964–14972.  https://doi.org/10.1016/j.ceramint.2015.08.041 CrossRefGoogle Scholar
  17. 17.
    Soleymani M, Moheb A, Joudaki E (2009) High surface area nano-sized La0.6Ca0.4MnO3 perovskite powder prepared by low temperature pyrolysis of a modified citrate gel. Eur J Chem 7(2009):809–817.  https://doi.org/10.2478/s11532-009-0083-2 CrossRefGoogle Scholar
  18. 18.
    Noorsyakirah A, Mazlan M, Afian OM, Aswad MA, Jabir SM, Nurazilah MZ, Afiq NHM, Bakar M, Nizam AJM, Zahid OA, Bakri MHM (2016) Application of potassium carbonate as space holder for metal injection molding process of open pore copper foam. Proc Chem 19:552–557.  https://doi.org/10.1016/j.proche.2016.03.052 CrossRefGoogle Scholar
  19. 19.
    Wang Y, Sui Y, Wang X, Su W, Liu X, Fan HJ (2010) Thermal conductivity of electron-doped CaMnO3 perovskites: local lattice distortions and optical phonon thermal excitation. Acta Mater 58:6306–6316.  https://doi.org/10.1016/j.actamat.2010.07.052 CrossRefGoogle Scholar
  20. 20.
    Baranovskiy A, Graff A, Klose J, Mayer J, Amouyal Y (2018) On the origin of vibrational properties of calcium manganate based thermoelectric compounds. Nano Energy.  https://doi.org/10.1016/j.nanoen.2018.02.054 CrossRefGoogle Scholar
  21. 21.
    Sotelo A, Depriester M, Torres MA, Sahraoui AH, Madre MA, Diez JC (2018) Effect of simultaneous K, and Yb substitution for Ca on the microstructural and thermoelectric characteristics of CaMnO3 ceramics. Ceram Int.  https://doi.org/10.1016/j.ceramint.2018.04.071 CrossRefGoogle Scholar
  22. 22.
    Noudem JG, Kenfaui D, Quetel-Weben S, Sanmathi CS, Retoux R, Gomina M (2011) Spark plasma sintering of n-Type thermoelectric Ca0.95Sm0.05MnO3. J Amer Ceram Soc. 94:2608–2612CrossRefGoogle Scholar
  23. 23.
    Quetel-Weben S, Retoux R, Noudem JG (2013) Thermoelectric Ca0.9Yb0.1MnO3 − δ grain growth controlled by spark plasma sintering. J Eur Ceram Soc 33:1755–1762CrossRefGoogle Scholar
  24. 24.
    Kabir R, Wang D, Zhang T, Tian R, Donelson R, Tan TT, Li S (2014) Tunable thermoelectric properties of Ca0.9Yb0.1MnO3 through controlling the particle size via ball mill processing. Ceram Int 40:16701–16706CrossRefGoogle Scholar
  25. 25.
    Wang H, Wang C (2012) Synthesis of Dy doped Yb0.1Ca0.9MnO3 ceramics with a high relative density and their thermoelectric properties. Mater Res Bull 47:2252–2256CrossRefGoogle Scholar
  26. 26.
    Zhu Y, Wang C, Wang H, Su W, Liu J, Li J (2014) Influence of Dy/Bi dual doping on thermoelectric performance of CaMnO3 ceramics. Mater Chem Phys 144:385–389CrossRefGoogle Scholar
  27. 27.
    Park JW, Kwak DH, Yoon SH, Choi SC (2009) Thermoelectric properties of Bi, Nb co-substituted CaMnO3 at high temperature. J Alloy Compd 487:550–555.  https://doi.org/10.1016/j.jallcom.2009.08.012 CrossRefGoogle Scholar
  28. 28.
    Molinari M, Tompsett DA, Parker SC, Azoughb F, Freerb R (2014) Structural, electronic and thermoelectric behaviour of CaMnO3 and CaMnO(3-δ). J Mater Chem A 2:14109.  https://doi.org/10.1039/c4ta01514b CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.i3N, Departamento de FísicaUniversidade de AveiroAveiroPortugal
  2. 2.Departamento de Engenharia de Materiais e Cerâmica, CICECO – Aveiro Institute of MaterialsUniversidade de AveiroAveiroPortugal
  3. 3.Departamento de Física, CICECO – Aveiro Institute of MaterialsUniversidade de AveiroAveiroPortugal
  4. 4.Dpto. de Ciencia de MaterialesICMA (CSIC-Universidad de Zaragoza)ZaragozaSpain

Personalised recommendations