Journal of Materials Science

, Volume 54, Issue 3, pp 2754–2762 | Cite as

Electrospun poly(vinylidene fluoride)-zinc oxide hierarchical composite fiber membrane as piezoelectric acoustoelectric nanogenerator

  • Bolun Sun
  • Xiang LiEmail author
  • Rui Zhao
  • He Ji
  • Ju Qiu
  • Nan Zhang
  • Dayong He
  • Ce WangEmail author


Nanogenerators which efficiently convert mechanical forces, vibrations and sound to electrical energy have attracted much attention and showed potential application as sustainable energy source for powering miniature devices. In this work, we fabricated a piezoelectric acoustoelectric nanogenerator using poly(vinylidene fluoride)-zinc oxide composite fiber membrane with hierarchical microstructure by electrospinning and hydrothermal techniques. The prepared PVDF–ZnO acoustoelectric nanogenerator (PVDF–ZnOANG) was able to generate voltage and current output of 1.12 V and 1.6 μA with a power density output of 0.2 μW cm−2 (50 μW cm−3) in optimized sound condition (140 Hz, 116 dB). Under the optimized sound condition, the electric energy generated by the prepared PVDF–ZnOANG could charge a capacitor up to 1.3 V in 3 min. The PVDF–ZnOANG generated higher voltage output under sound of low frequency and high sound pressure level and therefore might be a promising power source for noise energy harvesting.



This work is supported by the research Grants from the National Natural Science Foundation of China (Nos. 21474043, 51773082) and Jilin Provincial Industrial Innovation Program (No. 2016C024).

Supplementary material

Supplementary material 1 (MPG 45176 kb)

Supplementary material 2 (MPG 307982 kb)


  1. 1.
    Fan FR, Tang W, Wang ZL (2016) Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater 28:4283–4305CrossRefGoogle Scholar
  2. 2.
    Wu H, Huang Y, Xu F, Duan Y, Yin Z (2016) Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv Mater 28:9881–9919CrossRefGoogle Scholar
  3. 3.
    Kim HS, Kim JH, Kim J (2011) A review of piezoelectric energy harvesting based on vibration. Int J Precis Eng Man 12(6):1129–1141CrossRefGoogle Scholar
  4. 4.
    Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246CrossRefGoogle Scholar
  5. 5.
    Park KI, Xu S, Liu Y, Hwang GT, Kang SJ, Wang ZL, Lee KJ (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10:4939–4943CrossRefGoogle Scholar
  6. 6.
    Chen X, Xu S, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10:2133–2137CrossRefGoogle Scholar
  7. 7.
    Lin YF, Song J, Ding Y, Lu SY (2008) Piezoelectric nanogenerator using CdS nanowires. Appl Phys Lett 92:022105CrossRefGoogle Scholar
  8. 8.
    Chang C, Tran VH, Wang J, Fuh YK, Lin L (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10:726–731CrossRefGoogle Scholar
  9. 9.
    Lang C, Fang J, Shao H, Ding X, Lin T (2016) High-sensitivity acoustic sensors from nanofibre webs. Nat Commun 7:11108CrossRefGoogle Scholar
  10. 10.
    Cha S, Kim SM, Kim H et al (2011) Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett 11:5142–5147CrossRefGoogle Scholar
  11. 11.
    Li B, Laviage AJ, You JH, Kim YJ (2013) Harvesting low-frequency acoustic energy using multiple PVDF beam arrays in quarter-wavelength acoustic resonator. Appl Acoust 74:1271–1278CrossRefGoogle Scholar
  12. 12.
    Lang C, Fang J, Shao H, Wang H, Yan G, Ding X, Lin T (2017) High-output acoustoelectric power generators from poly(vinylidenefluoride-co-trifluoroethylene) electrospun nano-nonwovens. Nano Energy 35:146–153CrossRefGoogle Scholar
  13. 13.
    Chang J, Dommer M, Chang C, Lin L (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1:356–371CrossRefGoogle Scholar
  14. 14.
    Sun C, Shi J, Bayerl DJ, Wang X (2011) PVDF microbelts for harvesting energy from respiration. Energy Environ Sci 4:4508–4512CrossRefGoogle Scholar
  15. 15.
    Soin N, Shah TH, Anand SC et al (2014) Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy Environ Sci 7:1670–1679CrossRefGoogle Scholar
  16. 16.
    Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J Mater Chem 21:11088–11091CrossRefGoogle Scholar
  17. 17.
    Yu H, Huang T, Lu M, Mao M, Zhang Q, Wang H (2013) Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology 24:405401CrossRefGoogle Scholar
  18. 18.
    Garain S, Jana S, Sinha TK, Mandal D (2016) Design of in situ poled Ce3+ doped electrospun PVDF/graphene composite nanofibers for fabrication of nano-pressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl Mater Interfaces 8:4532–4540CrossRefGoogle Scholar
  19. 19.
    Ghosh SK, Biswas A, Sen S, Das C, Henkel K, Schmeisser D, Mandal D (2016) Yb3+ assisted self-polarized PVDF based ferroelectretic nanogenerator: a facile strategy of highly efficient mechanical energy harvester fabrication. Nano Energy 30:621–629CrossRefGoogle Scholar
  20. 20.
    Zhang G, Liao Q, Zhang Z, Liang Q, Zhao Y, Zheng X, Zhang Y (2016) Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose. Adv Sci 3:1500257CrossRefGoogle Scholar
  21. 21.
    Li Z, Zhang X, Li G (2014) In situ ZnO nanowire growth to promote the PVDF piezo phase and the ZnO–PVDF hybrid self-rectified nanogenerator as a touch sensor. Phys Chem Chem Phys 16:5475–5479CrossRefGoogle Scholar
  22. 22.
    Hasan MR, Baek SH, Seong KS, Kim JH, Park IK (2015) Hierarchical ZnO nanorods on Si micro-pillar arrays for performance enhancement of piezoelectric nanogenerators. ACS Appl Mater Interfaces 7:5768–5774CrossRefGoogle Scholar
  23. 23.
    Lee M, Chen CY, Wang S, Cha SN, Park YJ, Kim JM, Chou L, Wang ZL (2012) A hybrid piezoelectric structure for wearable nanogenerators. Adv Mater 24:1759–1764CrossRefGoogle Scholar
  24. 24.
    Chang Z (2011) “Firecracker-shaped” ZnO/polyimide hybrid nanofibers via electrospinning and hydrothermal process. Chem Commun 2011:4427–4429CrossRefGoogle Scholar
  25. 25.
    Feng W, Chen J, Hou C (2014) Growth and characterization of ZnO needles. Appl Nanosci 4:15–18CrossRefGoogle Scholar
  26. 26.
    Lin ZH, Yang Y, Wu JM, Liu Y, Zhang F, Wang ZL (2012) BaTiO3 nanotubes-based flexible and transparent nanogenerators. J Phys Chem Lett 3:3599–3604CrossRefGoogle Scholar
  27. 27.
    Shin SH, Kim YH, Lee MH, Jung JY, Nah J (2014) Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano 8(3):2766–2773CrossRefGoogle Scholar
  28. 28.
    Zhang L, Bai S, Su C, Zheng Y, Qin Y, Xu C, Wang ZL (2015) A high-reliability kevlar fiber-ZnO nanowires hybrid nanogenerator and its application on self-powered UV detection. Adv Funct Mater 25:5794–5798CrossRefGoogle Scholar
  29. 29.
    Masghouni N, Burton J, Philen MK, Al-Haik M (2015) Investigating the energy harvesting capabilities of a hybrid ZnO nanowires/carbon fiber polymer composite beam. Nanotechnology 26:095401CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Alan G. MacDiarmid InstituteJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations